WADD TECHNICAL REPORT 60-661

‘ 3 '\ "- N 1 g ’ 9

> i o

—T‘R-O\ -359

DISTRIBUTION-FREE STATISTICAL TESTS

James V. Bradley

Behavioral Sciences Laboratory
Aerospace Medical Division

20090504 236

AUGUST 1960

‘ WRIGHT AIR DEVELOPMENT DIVISION




o

NOTICES

When Government drawings, specifications, or other data are used for any purpose other
than in connection with a definitely related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that
the Government may have formulated, furnished, or in any way supplied the said drawings,
specifications, or other data, is not to be regarded by implication or otherwise as in any manner
licensing the holder or any other person or corporation, or conveying any rights or permission
to manufacture, use, or sell any patented invention that may in any way be related thereto.

2" 4

Qualified requesters may obtain copies of this report from the Armed Services Technical
Information Agency, (ASTIA), Arlington Hall Station, Arlington 12, Virginia.

*

This report has been released to the Office of Technical Services, U. S. Department of Com-
merce, Washington 25, D. C., for sale to the general public.

W

Copies of WADD Technical Reports and Technical Notes should not be returned to the Wright
Air Development Division unless return is required by security considerations, contractual obliga-
tions, or notice on a specific document.




AD-2Y9 2 6%

WADD TECHNICAL REPORT 60-661

DISTRIBUTION-FREE STATISTICAL TESTS

James V. Bradley

Behavioral Sciences Laboratory
Aerospace Medical Division

AUGUST 1960

Project No. 7184
Task No. 71581

WRIGHT AIR DEVELOPMENT DIVISION
AIR RESEARCH AND DEVELOPMENT COMMAND
UNITED STATES AIR FORCE
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

1,000 — November 1960 — 10-465

*\_r
-



FOREWORD

This report was prepared by the Engineering Psychology Branch
of the Behavioral Sciences Laboratory, Aerospace Medical Division,
Wright Air Development Division. The work began as the responsibility
of the Controls Section, under Research and Development Task Number
7182 - 71514 with James V. Bradley acting as Task Scientist. It con-
tinued under subsequent Research and Development Task 7184 - 71581
and was finished by the author as a member of the Maintenance Design
Section. The manuscript was typed at the Aviation Psychology Project,
Miami University, under Contract Number AF 33(616)-5624, under the
technical supervision of Dr. Clarke W. Crannell and Dr, S, A, Switzer,

The material included is the result of a review of the literature
begun early in 1955 with the approval of Mr, John W. Senders, then
Section Chief of the Controls Section, and ending early in 1958. The
author was greatly aided in this effort by I. R. Savage's '"Bibliography
of Nonparametric Statistics and Related Topics', by hundreds of
statisticians and institutions sending reprints and by the encouragement
of his colleagues. He is particularly indebted to Dr., Philburn Ratoosh
who critically reviewed the next-to-final draft, to Dr. Virginia L,
Senders and Dr. Harry J. Jerison whose constant interest helped the
author to maintain momentum, and to Mr. John W, Senders, Dr. H. R.
van Saun, Dr, John P, Hornseth and Major Leroy Pigg who, as Section
Chiefs, exercised their administrative powers in support of the
undertaking,
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ABSTRACT

As a result of an extensive survey of the literature, a large number
of distribution-free statistical tests are examined. Tests are grouped
together primarily according to general type of mathematical derivation
or type of statistical "information" used in conducting the test. Each
of the more important tests is treated under the headings: Rationale,
Null Hypothesis, Assumptions, Treatment of Ties, Efficiency, Appli-
cation, Discussion, Tables, and Sources. Derivations are given
and mathematical interrelationships among the tests are indicated.
Strengths and weaknesses of individual tests, and of distribution-free
tests as a class compared to parametric tests, are discussed.

PUBLICATION REVIEW

WALTER F. GRETHER
Technical Director

Behavioral Sciences Laboratory
Aerospace Medical Division
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CHAPTER I

INTRODUCTION
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Figure 1. Radically nonnormal distribution obtained in a routine
experiment by the author. (Histogram is based on 2520 scores;
smooth curve is normal distribution with same mean, variance and
area as histogram),

1. History

Althoughnonparametric statistics can be traced as far back
as 1710, when John Arbuthnott attempted to prove the wisdom of Divine
Providence using the statistical Sign test, the preponderance of such
tests are of quite recent origin. Van Dantzig and Hemelrijk (7) dis-
tinguish four stages of statistical development. In the first or one-
parameter stage statistical quantities were considered to be constants
such as the ratio of the yearly number of deaths to number of living.
In the second or two-parameter stage variability was recognized as a
factor and it was believed that empirical distributions could be described
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by stating the mean and variance, the parent distribution being assumed
to be a normal distribution. In the third or multiparameter stage, uni-
versal normality was no longer an article of faith, but it was beligved
that an empirical distribution could be described by identifying its mo-
ments in the assumption that ''statistical phenomena were governed by
laws of general validity albeit that they showed somewhat greater com-
plexity than just the normal law.'" The various Types of Pearsonian
Curve were a product of this phase. In the fourth or no-parameter phase
efforts to identify parameters of a parent population in order to be able
to specify its probability law were largely replaced by attempts to deter-
mine ''exact relations, valid for restricted sample sizes.' Savage (38)
places the "true beginning'' of nonparametric statistics in 1936, and it is
indeed at about this time that it began to take the form of a separate
statistical discipline. The rapid growth of activity in this field since
that date can be inferred from Figure 2 which shows the proportion of

PROPORTION OF CONTENTS OF EACH YEAR OF ANNALS OF MATHE-
MATICAL STATISTICS WHICH IS LISTED IN SAVAGE'S "BIBLIOGRAPHY
OF NONPARAMETRIC STATISTICS AND RELATED TOPICS"

1930 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 1952

YEAR OF PUBLICATION

Figure 2. Twenty year growth of activity in the area of nonpara-
metric statistics (as broadly defined by Savage).
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articles in each volume of the Annals of Mathematical Statistics which
are listed in Savage's '""Bibliography of Nonparametric Statistics and
Related Topics''.

2. Definitions

The terms ""nonparametric' and ''distribution-free'!' are neither
semantically satisfactory nor synonymous. This matter has been dis-
cussed at length by Kendall and Sundrum (28) who have attempted defini-
tions of the terms which reflect the theor etical limitations of the tests
to which they are commonly applied. Popular usage, however, has
equated the terms and they will be used interchangeably throughout
this report. Grossly speaking, a nonparametric test is one which
makes no hypothesis about the value of a parameter in a statistical
density function, while a distribution-free test is one which makes no
assumptions about the precise form of the sampled population. Fre-
quently the assumption is made that it is continuously distributed and
sometimes more elaborate assumptions are made such as the assump-
tion that the sampled populations have identical shapes or distributions
symmetrical about the same point. However, the assumptions are
never so elaborate as to imply a population whose distribution is com-
pletely specified. The term distribution-free is somewhat deceptive,
however. The reason that no elaborate assumptions are made about the
distribution of population magnitudes is very simple: the magnitudes
are not used as such in the test. Instead, the ranks, ordinal position,
frequency or some such attribute of the original observations provide
the '"information' used by the test statistic. And of course the '""popu-
lation'' distribution of the attribute used must be known exactly for the
conditions stated in the null hypothesis, just as must the population dis-
tribution of magnitudes in classical statistical tests. An important dis-
tinction should be made, however, While both parametric and nonpara-
metric tests require that the form of a distribution be fully known, that
knowledge, in the parametric case, is generally not forthcoming and the
required distribution of magnitudes must therefore be '"assumed' or
inferred on the basis of approximate or incomplete information. In
the nonpararaetric case, on the other hand, the distribution of the
attribute is usually known precisely from a priori considerations and
need not, therefore, be "assumed.'" The difference, then, is not one
of requirement but rather of what is required and of certainty that the
requirement will be met.

Because they do not use magnitudes as such, distribution-free
tests do not test for parameters computed from them in the same sense



that classical tests test for equal means, say, or identical variances.
Instead, the analogous distribution-free tests might test for equal medians
or identical interquartile ranges, i.e., values which can be computed
from nonmagnitudinal attributes such as frequency, or position in rank
order. Of course, a distribution-free test may be indirectly a test

for parameters based on magnitudes; for exaniple, if symmetrical pop-
ulations can be assumed, then a distribution-free test for equal medians
becomes, in addition, a test for equal means.

Although distribution-free tests generally are not based directly
upon the magnitudes of the original observations, results by Stuart (46,
47) suggest that inferences from some such tests may be extended to
the original magnitudes with a high degree of approximation. Stuart
found very high correlations between observations, from either the
normal or theuniform distribution, and their ranks. The correlations
were respectively .94 and . 96 for samples of 25 observations, and in-
creased with increasing sample size toward limits of .98 and 1. 00.
The existence of these correlations is dependent merely upon the exis-
tence of a variance.

3. Distribution-Free vs Classical Tests

Both distribution-free and classical tests have points of super-
iority, and which type of test should be used depends upon a number of
specific conditions as well as upon the sophistication of the user. The
comparison, however, is generally quite favorable to distribution-free
tests. Some advantages and disadvantages of distribution-free rela-
tive to parametric tests are outlined in the paragraphs to follow.

a. Simplicity of Derivation. Most distribution-free tests can
be derived using simple combinatorial formulae, while the derivation
of classical tests requires a level of mathematics far above the highest
level attained by the typical research worker. However, the logic
and appropriateness of a test's application, the assumptions it makes,
and its sensitivity to assumption violation all hinge upon its derivation.
If the research worker understands the derivation, he can deduce or
infer much of this necessary information for almost any application he
may contemplate, thus operating with a maximum of comprehension and
flexibility., If he does not understand it, he is reduced to the uncom-
prehending '"cookbook' procedures of performing tests by following
a paradigm while obeying certain highly overgeneralized rules of thumb.




In the opinion of the writer this simplicity of derivation is by far the
most important advantage of distribution-free statistics since, for
research workers ignorant of higher mathematics, it replaces a
mystery-cloaked ritual with a truly scientific procedure.

b. Ease of Application.. The mathematical operations re-
quired in computing the test statistic are generally much less involved
for distribution-free than for parametric statistics. Frequently all
that is required is counting, or adding, subtracting and ranking. This
simplicity of application is obviously an economic advantage, permitting
lower-paid, mathematically naive personnel to be employed to reduce
data and perform computations.

c. Speed of Application. When samples are of small or
moderate size, distribution-free methods are generally faster than
parametric techniques. This saving in computation time may be
used to obtain more data, thus frequently cancelling any advantage
the parametric test may have in terms of statistical efficiency. When
samples are large ( say N2 30) distribution-free tests involving
simple counting are generally faster, while those involving ranking
may prove considerably more time consuming, than standard classical
tests. And if a large number of similar tests are to be performed
using an electronic computer, rather than a desk calculator, para-
metric tests are probably faster at all sample sizes.

d. Statistical Efficiency. As indicated in the preceding para-
graphs, when judged by the practical criterion of the total amount of
human effort required to conduct an experiment and analyze its results,
distribution-free tests are frequently, if not generally, more efficient
than their parametric counterparts. When judged by the mathematical
criterion of statistical efficiency, distribution-free tests are often
superior or equal to their most efficient parametric counterparts when
both tests are applied under '"nonparametric" conditions, i.e., condi-
tions meeting all assumptions of the distribution-free test, but failing
to meet some of the assumptions of the parametric test. When both
tests are applied under ''parametric' conditions, i.e., conditions
meeting all assumptions of the parametric test, and therefore of both
tests, distribution-free tests are very slightly less efficient (i, e.,
have relative efficiencies a shade less than 1,00) at extremely small
sample sizes, becoming increasingly less efficient as sample size
increases. When sample size becomes infinite, distribution-free
tests generally have their lowest efficiencies relative to the most




efficient, comparable parametric test., This efficiency value may be
as high as , 955 or as low as zero, depending on the test,

e. Scope of Application. Because they are based on fewer
and less elaborate assumptions than classical tests, distribution-free
tests can be legitimately applied to a much larger class of papulations.

f. Susceptibility to Violation of Assumptions, Obviously the
more elaborate the assumptions the fewer the number of situations which
meet them, and, in this sense, parametric assumptions are the more
susceptible to violation. For example, the parametric assumption of
normality requires that, in addition to being continuously and symmetri-
cally distributed (as might be assumed by nonparametric tests), the
population must also be bell-shaped, since these are all features of
a Gaussian distribution.

g. Detectability of Violations of Assumptions, When the non-
parametric assumption of continuous distributions is violated, both the
fact and the degree of the violation are readily apparent from the exist-
ence of tied scores in the obtained data. No such obvious indication
advises the experimenter that a parametric assumption has been vio-
lated. Of course he may apply tests for normality or homogeneity to
the obtained data, but such tests are rather unsatisfactory. They
are unlikely to detect any but the most extreme violations when samples
are small, and they are almost certain to detect even the most trivial-
ly slight violations when samples are very large.

h. Effect of Assumption Violations, * Although much has been
written about the robustness of classical tests and their insensitivity to
violation of assumptions, this claim actually rests upon a multitude of
qualifications which rarely accompany it, The writer has obtained
completely natural and uncontrived experimental data which, by vio-
lating a single parametric assumption, rendered a standard parametric

=°‘This topic is discussed at length in two WADC Technical Reports
shortly to go to press: Bradley, J. V., Studies in research method-
ology, I: Compatability of psychological measurements with para-
metric assumptions,, and Bradley, J. V., Studies in research method-
ology II: Consequences of violating parametric assumptions - fact and
fallacy.




test completely powerless, at reasonable sample sizes and standard
significance levels, to reject any of a wide range of false hypotheses.
The fact is that any violation of assumptions can be expected to alter
the distribution of the test statistic and change the value at which the
test statistic becomes significant, Whether or not this effect is
negligible depends not only upon the degree to which the assumption
is violated but also upon extrinsic factors such as sample size and
significance level. This is true of toth parametric and distribution-
free tests.

In the nonparametric case, the effects of violation of the con-
tinuity assumption can be mitigated by applying certain methods of
dealinz with tied scores; in the parametric case, the effect of non-
normrality can be reduced by use of transformations, but at consideratly
greater expenditure of time.

i. Type of Measurements Required. Measurements on an
interval or ratio scale are generally required by classical tests., How-
ever, distribution-free tests have greater versatility. They generally
require measurernents on at least an ordinal, or sometimes a nominal,
scale but can te used with measurements from any higher order scale.
They are, of course, the only truly appropriate tests when original
scores exist in the natural form of ranks or small frequencies.

j. Logical Validity of Rejection Region. The distribution of
a classical test statistic is usually continuous, increasing or decreasing
smoothly, without fluctuation, except for a possible change of direction
at a single mode. Unfortunately the point probability of a nonparametric
test statistic does not necessarily always increase as the test statistic
approaches its most probable value. It may level off or even dip before
resuming its climb, This characteristic, when it exists, may be decided-
ly embarrassing when the rejection region for a distribution-free test
is selected, on an intuitive basis. Should the rejection region be chosen
as the cumulative probability for those values of the test statistic, which
are least likely, or those which are most distant from the expected
value of the test statistic?

k. Types of Statistics Testable. Statistics defined in terms
of arithmetical operations upon observation magnitudes can be tested
by classical techniques, while those defined by order relationships (rank)
or catezory-frequencies can be tested by distribution-free methods,




Means and variances are examples of the former, medians and exceed-
ances of the latter. The two approaches are different, but neither is
superior; both types of statistic have their advantages.

1. Testability of Higher Order Interactions. Higher order
interactions can be tested with ease by classical methods. However,
there are few distribution-free tests for higher interactions and they
are awkward and limited in application.

m. Choice of Significance Level, The distribution of the
test statistic, when the null hypothesis is true, is usually continuous
for classical tests and discrete for distribution-free tests. This means
that, for any designated significance level oc, a value of the classical
statistic can be found whose cumulative probability is exactly oc while,
for the distribution-free test, such a value of the test statistic usually
does not exist. Thus when using a classical test the research worker
may choose any significance level he wishes, while, when using a dis-
tribution-free test, he must either accept one of the discrete cumulative
probabilities of the test statistic as his significance level, or he must
apply the test inexactly, using as significance level a cumulative prob-
ability which the test statistic cannot actually assume and rejecting
whenever it is found to have a smaller cumulative probability. The
latter choice is often forced upon him by inexact tables of probabilities
which list values of the test statistic which are ''significant'' at the
standard significance levels, .05, .0l and . 001,

n. Influence of Sample Size. The size of the sample upon
which they are to be used is an extremely important factor in deter-
miining the relative merits of distribution-free and classical tests.
When samples are small (say N £10) distribution-free tests are easier,
quicker and only slightly less efficient even if all assumptions of the
parametric test have been met., At these sample sizes, violations
of parametric assumptions generally have their most devastating effect,
yet are most unlikely to be detected. Therefore, unless the experiment-
er has a priori knowledge that all parametric assumptions have been
met, the wiser choice would generally appear to be a distribution-free
test., When samples are large (say N > 30); some distribution-free
tests still compare favorably with their parametric counterparts, Others,
however, will have become more laborious and time consuming, and, in
contrast to parametric tests whose assumptions are met, their calcu-
lated or tabled probabilities may be only approximate, Finally, their
efficiency relative to a parametric test whose assumptions are all true




may have dropped to an appreciably low level. On the other hand,
appreciable violations of parametric assumptions will have become
more readily detectable and, in many cases, their effect may have
become negligible due to the effect described by the central limit
theorem. At large sample sizes, therefore, either type of test may
be superior; however, circumstances are much more favorable to
parametric tests than is the case when samples are small,

4. Organization of Material

Certain topics appear to be of critical importance to the under -
standing and application of distribution-free tests, These topics will be
discussed in a general way in the following paragraphs and the same topics
will form the paragraph headings under which each of the more important
distribution-free tests will be examined.

a. Rationale. The best insurance against misapplication is a
thorough understanding of the derivation and the mathematical logic
upon which a test is based. The hypothesis which can be tested, the
assumptions which must be made, the seriousness of various degrees
of assumption-violation, the best method of dealing with such violations,
the efficiency of the test, the situations to which it is applicable and the
exactitude of the tables or of the probabilities obtained by formula all
depend upon the test's derivation and can either be directly determined
or partially inferred from a knowledge of it, Furthermore, many tests
are legitimately applicable in situations for which they were not originally
designed; however, the experimenter will not be able to recognize these
situations unless he understands the derivation. Because of their impor-
tance, therefore, derivations have been given at some length. An effort
has been made to use the simplest mathematics possible and to present
derivations which will give the greatest insight into the logic of applica-
tion and the advantages and limitations of the test. For this reason,
many of the derivations are mathematically inefficient and are not in
the form in which they are found in the literature.

b. Null Hypothesis. The literature on a test frequently does
not contain an explicit and precise statement of the tested hypothesis,
Instead the hypothesis may be implicit in some mathematical manipu-
lations, it may be vaguely hinted at, or it may be stated explicitly but
inaccurately, generally in the direction of overstatement. A major
reason for these difficulties appears to be the lack of concise verbal



terms to express what the test is actually doing. In order to avoid
misleading the reader, an attempt has been made to express the tested
hypothesis explicitly and precisely, with resort to expression in mathe-
matical terms when necessary,

c. Assumptions. Assumptions also are frequently unstated,
and occasionally misstated, in the literature, in which case they must
be inferred from the derivation. In common with parametric tests,
the assumptions of random sampling and independent observations are
usually required. These assumptions however refer, at least in a
sense, not to characteristics of the sampled population but rather to
the method of sampling. Unlike 'population' assumptions, their valid-
ity can generally be assured by adhering rigidly to certain prescribed
sampling and experimental procedures,

Aside from the above one of the commonest nonparametric
assumptions is that the sampled populations are continuously distrib-
uted. Such a population has an infinite number of abscissae and thus
contains an infinite number of different score magnitudes, each of which
has zero a priori probability of being drawn. Theoretically, therefore,
a sample from a continuously distributed population will contain no scores
of zero and no tied scores since zero is a predesignated score and since
the first-drawn member of a tied group can be considered to predesignate
the remainder, Zero scores are embarrassing in tests using the alge-
braic sign of scores, and tied scores are undesirable in tests which rank
scores and whose derivation requires that each rank occur only once.

The assumption of continuity, however, is an unrealistic one. Even if
the sampled population is continuous, measurements made upon its
members must be discretely distributed since no measuring instrument is
capable of infinite precision. Suppose any population of actual measure-
ments to be transformed into measurements on a scale running from

zero to one and that precision is possible out to the N-th decimal place.
Then the population of measurements is a discrete population whose
interval width is the difference between successive digits at the N-th
decimal place. The assumption of continuous distributions, therefore,
can never be exactly fulfilled in practice. It can be approximated by
taking fine measurements from distributions representing a very large
number of distinguishable values. Fortunately, the degree to which

the continuity assumption is violated can be largely inferred from the
proportion of tied scores in the data. Therefore, although unrealistic,
this assumption has the advantage that its violations are highly detectable.
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Another assumption frequently encountered is that the sampled
populations have identical, but unspecified, shapes. This assumption
is found in tests which fail to reject when the sampled populations are
identical but which may reject for a variety of reasons. By assuming
identical shapes, rejection may be attributed to nonidentity of location.
It is to be noted that this assumption may be dispensed with if the test
be regarded merely as a test for identical populations against the broad
alternative of nonidentical populations.

d. Treatment of Zero or Tied Scores. As mentioned earlier
some tests require that all scores have an algebraic sign, i.e., that
there are no scores of zero magnitude; others require that no scores
have the same magnitude, i.e., that there are no ties for any given rank.
Zero and tied scores do sometimes occur, however, and several methods
of dealing with them have been suggested:

(1) Randomize. Randomly assign a plus or a minus to
each zero score (say, on the basis of a coin toss); or randomly assign
to scores of the same magnitude the ranks they would have if not tied,
i,e., if differing very slightly. This method appeals to mathematicians,
because only under this method does the test statistic have exactly the
same distribution, when the null hypothesis is true, that it would have
if the continuity assumption were not violated. It makes little sense
experimentally, however, since it permits an additional and, in a
sense, unnecessary, element of pure chance to help determine whether
or not a false hypothesis will be rejected.

(2) Minimize the Probability of Rejection. Assign all
zero scores that algebraic sign which is least conducive to rejection
of the null hypothesis; or assign ranks to tied scores in the way least
conducive to rejection of the null hypothesis. This is the conservative
approach and it alone insures, in advance of sampling, that the tested
hypothesis will not be falsely rejected due to violation of the assump-
tion of continuity.

(3) Obtain the Average Value of the Test Statistic. Assign
half the zeros a plus, half a minus sign; or assign each score in the tied
group-the average of the ranks the members of the group would have if
not tied. The latter is known as the midrank method. It results in a
distribution of ranks having the same mean but somewhat smaller
variance than the discrete rectangular distribution of integers 1 to N.
For some tests a '"correction for ties' has been devised for use with
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the midrank method. When applied to asymptotic formulae for the

test statistic the correction compensates for the reduction in variance
due to the use of midranks. It thus tends to reestablish the validity

of the test in the large-sample case. The logic of the implicit assump-
tions upon which this correction is based has been challenged. (VII-36)
However, the correction is probably an improvement in any case,
although perhaps not fully restoring the test to exactitude.

(4) Obtain the Average Probability. Break ties in all
possible ways, calculate the test statistic and obtain its probability for
each way, and average these probabilities. This improves on the above
method by obtaining the average probability of the test statistic, rather
than the probability for the average value of the test statistic, averaging
over all possible ways in which tied measurements could have been
caused by truly differing scores. It is time consuming, however, and
has the disadvantage, in common with the preceding method, that the
average of all poscibilities may differ greatly from that one possibility
which represents the true state of affairs.

(5) Drop Zeros. Discard zero scores and reduce N
accordingly. The power of certain tests has been found to be greater
under this method than under methods (1) or (3). However, it seems
likely that this is an artifact attributable to an unrecognized and spurious
increase in the probability of rejection in all cases, i.e., when the
tested hypothesis is true as well as when it is false. Zero difference
scores lend support to the hypothesis of ''no difference.' Discarding
them eliminates data favoring the null hypothesis and permits contrary
data to assume greater weight, thus spuriously increasing the probability
of rejection.

A final method is to calculate the test statistic twice,
once giving all ambiguous data (zero or tied scores) the possible true
values which are most conducive to rejection, once giving them the
values least conducive to rejection. It has been said with some justi-
fication, that if in both cases the test statistic falls within, or in both
cases outside of, the rejection region there is no problem; if it does
not, there is no solution.

e. Efficiency. Certain mathematical properties of a test
are important in evaluating its usefulness. The power of a test is
the probability of its rejecting a specified false hypothesis. (It is
equal to 1-B where B is the probability of committing a Type II
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error - failing to reject a false null hypothesis.) Power, then, depends
upon at least four variables: (a) the amount by which the hypothesis is in
error, i,e., the size of the discrepancy, 6, between the hypothesized
and true condition, (b) the size, oc, of the significance level chosen,

(c) the location of the rejection region, e.g., whether the test is one-
tailed or two-tailed, (d) the size, N, of the sample used in the test.

A power function is a curve in which all but one of these variables are
held constant and power is plotted as ordinate against that one variable,
usually 6, as abscissa. A test of a given true hypothesis is most
powerful against a specified alternative hypothesis if no other test of

the same hypothesis has greater power against the same alternative.

If it is most powerful with respect to each member of a class of alter-
native hypotheses, the test is called uniformly most powerful against
that class of alternatives.

A test is unbiassed, for a given alternative, if the probability
of rejecting the null hypothesis is greater when the alternative hypothesis
is true than when the null hypothesis is true.

A test is consistent for a given alternative to the null hypothe-
sis if, when that alternative hypothesis is true, the probability of re-
jecting the false null hypothesis, i.e., the power of the test, approaches
1 as the sample size, N, on which the test is based, approaches infinity.
The test is consistent with respect to a class of alternatives if it is
consistent for each of the alternatives of which the class is composed.

Efficiency is a relative term comparing the sensitivity of a
test with that of some other test, usually the most powerful alternative
available. Let A and B be statistical tests of the same null hypothesis
against the same set of alternative hypotheses, and let the tests use
the same significance level and the same number of tails. Then the
efficiency of test A relative to test B can be interpreted as the ratio
b/a, where a is the number of observations required by test A to equal,
by some criterion, the power of test B based on b observations. There
are actually a number of definitions of efficiency, differing mainly in
the criterion by which the two powers are equated.

Asymptotic efficiency is usually defined in terms of the limiting
value of the ratio b/a as b approaches infinity and is therefore relevant
only when the test is to be applied to very large samples., I has the
advantage of being very nearly independent of the exact size of the
samples so long as they are very large. The more common definitions
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of asymptotic efficiency appear to be equivalent. Asymptotic relative
efficiency, abbreviated A. R. E., and sometimes called Pittman effi-
ciency, is defined roughly as follows. Let A and B be two consistent
tests based upona and b observations respectively, each test statistic
being asymptotically normally distributed. Let both A and B test a
null hypothesis H, against an alternative hypothesis H_ at a signifi-
cance level oc. The asymptotic relative efficiency of A with respect

to B is the limiting value of the ratio b/a as a is allowed to vary in
such a way as to give A the same power as B while, simultaneously,

b approaches infinity and Ha approaches H . The purpose of the
""approach' of H, to Hy is to prevent the ratio b/a from assuming a
limiting value of 1 which it otherwise would do since at extremely large
sample sizes the power of a consistent test against a fixed alternative
is virtually 1. The method of obtaining asymptotic relative efficiency
has been shown to be equivalent (Stuart V-50) to that of obtaining
asymptotic local efficiency, Let A and B be one-tailed tests based on
a and b observations respectively and testing the same null hypothesis
against the same set of alternative hypotheses at the same significance
level. Let b approach infinity and vary a so that the power functions
of the two tests have equal slopes at the point H,. Then the limiting
ratio b/a is the asymptotic local efficiency of test A relative to test B.
Somewhat similar methods involve taking the asymptotic ratio of first
derivatives, i.e. slopes, of the power functions at the point Hy. In the
case of equal-tailed, two-tailed tests this is zero and the asymptotic
ratio of second derivatives is used. Estimate efficiency is obtained by
establishing a mathematical equivalence between relative efficiency of
two tests and the relative efficiency of two estimators of a population
parameter. The latter requires that both estimates be consistent and
asymptotically normally distributed and is expressed in terms of the
ratio of the asymptotic variances of the two estimators. Estimate ef-
ficiency is therefore an index of relative efficiency for the case where
both tests are based upon large, i.e. '"infinite', samples. Stuart (VI-
26) observes that estimate efficiency is equivalent to asymptotic relative
efficiency. All of the asymptotic efficiencies defined above refer to
the relative power of two tests at the point H, of their power functions.
The efficiency values obtained therefore represent the effectiveness

of one test relative to another when the true condition differs negligibly
from the hypothesized condition, i.e., when the alternative hypothesis
lies in the immediate vicinity of the null hypothesis.

Nonasymptotic efficiencies depend upon the size sample upon
which the test is based, upon the location of the rejection region, upon
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the size oc of the significance level chosen, and upon the alternative
hypothesis or set of alternative hypotheses. Balancing the disadvan-
tage that nonasymptotic efficiencies are highly specific to experiment-
al test conditions, is the advantage that they are quite realistic to
those conditions. While asymptotic efficiencies provide a limiting
value for a test's efficiency at infinite sample size, this value is
generally much lower, when distribution-free statistics are compared
with classical tests, than is the efficiency value at practical sample
sizes. The relative efficiency of A with respect to B is simply b/a
where a is the number of observations required by test A to equal the
power of test B based on b observations when both statistics test the
same null hypothesis against the same alternative at the same signi-
ficance level (both either one-tailed or two-tailed). The power effi-
ciency of test A with respect to test B (of the same null hypothesis

at the same significance level against the same set of alternative
hypotheses) is obtained by holding a constant and varying b until the
power functions of the two tests are equated in the sense that the area
between the power functions when the ordinate for test A exceeds that
of test B equals the area between the power functions when the reverse
is true. The value taken by b need not be integral. The power effi-
ciency of A relative to B is then b/a. This definition of efficiency has
the advantage that the obtained efficiency values are peculiar to an
entire class of alternative hypotheses rather than to a specific alter-
native hypothesis. Its disadvantage lies in the failure of statisticians
to agree completely upon the precise method by which to apply it.

Some asymptotic efficiencies of some distribution-free tests
relative to their classical counterparts are given in Table I. All
efficiencies given in the body of the table are for the case where both
tests are applied under conditions satisfying all of the assumptions
of the classical test. Except when otherwise specified, the tests
were applied to normally distributed populations; comparisons in-
volving Student's t required that the two populations to which both
tests were applied have equal variances, etc. When more than one
efficiency is listed in a cell, the asymptotic efficiency of the test de-
pends upon the number of categories or groups to which the test is
applied. An asymptotic efficiency of zero requires some interpreta-
tion. It means that, when both tests are based upon an equal and "in-
finite' number of observations, the test with zero asymptotic efficiency
requires 'infinitely' more observations in order to equal the power of
the comparison test. It does not mean that the ratio of the powers of
the two tests is zero or infinity. The power of any consistent test
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TABLE I

EFFICIENCIES OF SOME DISTRIBUTION-FREE TESTS RELATIVE TO, AND UNDER
CONDITIONS ASSUMED BY, A (MOST POWERFUL) CLASSICAL,COMPARISON STATISTIC*

Asymptotic
Test Efficiency Established by Footnotes
Student's t* 1,000
X-test 1.000 van der Waeraden
Mann-Whitney . 955 Pitman, Mood, Dwass,
van der Waerden C, U, 1
Sign .637 Cochran, Jeeves & Rich-
ards, Dixon, Walsh C
Westenberg Median .637 Mood
No. Runs {(Location) 0 Pitman, Mood C
Analysis of Variance* 1. 000
Kruskal-Wallis H . 955 Andrews C, 2
Friedman .637-.912 Friedman
k-Sample Median .637 Andrews C, 3
F - Ratio* 1.000
Mood's Dispersion . 87 Mood, Dwass
. No. Runs (Dispersion) 0 Pitman, Mood C
Maximum Likelihood* 1.000
5, for Dispersion .74 Cox & Stuart
S3 for Dispersion LTl Cox & Stuart
Correlation Coeff, * 1. 000
Kendall' v .912 Moran
Spearman's p .912 Hotelling & Pabst
Blomgqvist's Median Test . 405 Blomqvist
Regression Coeff. b* 1. 000
Mann's T . 985 Stuart -C, U
Daniels . 985 Stuart
Cox & Stuart's Sl . 860 Stuart
Cox & Stuart's S3 . 827 Stuart
Cox & Stuart's SZ .782 Stuart
Median test for Trend .782 Stuart
Rank Serial Ry 0 Stuart (&
Records test d 0 Stuart C
Difference sign 0 Stuart C
Turning Point 0 Stuart

C - test has been shown to be consistent under certain conditions.

U - test has been shown to be unbiased under certain conditions.

1 - Asymptotic efficiency is 1. 000 when populations have uniform distributions (Pitman).
2 - Asymptotic efficiency is 1. 000 when populations have uniform distributions (Andrews).
3 - Asymptotic efficiency is . 333 when populations have uniform distributions {(Andrews).
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TABLE II

POWER COMPARISONS OF SOME STATISTICAL TESTS APPLIED TO THE SAME DATA

Tasts in Ordar of Decrsas. Null Sig. Author and Type
ing Power (within a block) Hypothesia Assumptions Sample Sisss Levsl of Comparison
Student's t-tast Normal 3,3i 1,@; 2,m; 5,e; 3,7
X-tast Equal Distributions |3,7; 5,6 van der Waardan
Mann-Whitnay Maans Equal 3,3; 3,7; 5,6; 1,,0; 2,00 .05
Max.Absolute Daviation Variancss 3,7, 5,6, 5,0 Mathematical
Number of Runs 3,7, 5,6: 5,

Equal Uniform van der Wasrdan
X-tast Maans Diatributions 4,6 .05
Mann-Whitnay Equal Mathamatical
Student's t-tast Variancss
Mann-Whitnay Equal Normal Dixon
Max. Absclute Deviation Mgaans Distributions 5,5 . 025
Wsastanbarg Median Equal Mathematical

Variancss

Mann-Whitnsy Normal Epstain
Tsao's Max, Abs, Dav. Equal Distributions
Epstain's Excssdancas Masans Equal 10, 10 . 05 Empirical
Number of Runs Variancss
Lehmann's Most Powarful Idantical Continuous
Mann-Whitnsy (1-tailsd} Populations Distributions
Westenbsrg Median " against y's 4,4, 6,6 .10 Lehmann
Mann- Whitnay (2-tailad) Distributed
Wastanbarg Madian " as Maxi- Mathematical
Max. Absclute Deviation mum x's
Numbsr of Runs
Regrassion Cosfficient b Normal
Mann's T-tast Distributions
Danisls Randomnass Fostar & Stuart
Fostar & Stuart's D against 100 .05
Fostsr & Stuart's 4 Linsar & Empirical
Rank Serial Correlation Trand .01
Diffsrsncs Sign
Turning Point
Numbasr of Runs Randomness .05 Bateman
Longeat Run vs. Markoff

Chain Mathamatical
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approaches 1 as sample size approaches infinity. Therefore when a
consistent test has an asymptotic efficiency of zero both its power and
the power of the comparison test are very close to 1 and are approach-
ing 1 as sample size approaches infinity. The power of the comparison
test, however, is approaching 1 faster. That is, at any "infinite', i.e.
extremely large, sample size the power of the comparison statistic is
very slightly greater than that of the test whose efficiency is sought,

but "infinitely", i.e. very many, more observations are required by
the test with zero asymptotic efficiency to close this infinitesimal
power gap. Finally, tests with zero asymptotic efficiency with respect
to the same comparison test do not necessarily have equal asymptotic
efficiency with respect to one another. For example, each of the four
tests in Table I having zero asymptotic efficiency with regard to the
regression coefficient has zero asymptotic efficiency with respect to

all of the seven to ten tests listed above it.

A number of investigators have compared the relative powers
of distribution-free tests with respect to each other without actually cal-
culating small-sample efficiencies. They have simply been compared
under identical conditions of application and then ranked in order of power.
Sometimes a most powerful classical statistic was included. The results
(see Table II) of these comparisons are naturally highly peculiar to the
conditions under which the comparison occurred.

Certain statisticians (17, 31, 49, 50) have addressed them-
selves to the problem of determining "most powerful' distribution-free
tests. Although successful, the gain in power is usually slight and is
generally obtained at the expense of simplicity. Furthermore, the pro-
perty of greatest power is contingent upon the type of distribution assumed
to exist when the null hypothesis is false. Lehmann (31) has obtained
the most powerful rank test for the hypothesis that two populations have
identical distributions against the alternative that the second population
is distributed as the k largest observations in the first population.
Terry (49) has described the rank test which is asymptotically most
powerful, at the point H,, for testing the hypothesis of identical dis-
tributions against the alternative that the two populations are normally
distributed with the same variance but with different means. His test
procedure requires that the N; + N, observations be ranked in order
of magnitude irrespective of sample. He then substitutes for each rank
the average magnitude corresponding to that rank in the average sample
of size N; + N, from a normal distribution with zero mean and unit
variance. This is accomplished by means of tables (XX and XXI)
supplied by Fisher and Yates (13). Thus scores from a population
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of unknown form are, in a sense, transformed so as to represent scores
from a normal distribution. Exact tables of probabilities are available
for Terry's test for N; + N, < 10, an asymptotically normally distri-
buted test statistic being used for large samples. A somewhat similar
test, the X-test, has been proposed by van der Waerden (50, 51). The
power of the X-test can equal that of Student's t-test when applied to
normally distributed populations (50) and can exceed the power of

the t-test when both are applied to uniformly distributed populations
(52). Both Terry's and van der Waerden's tests are analogous to,

and appear to be slightly more powerful than, the Mann-Whitney test.
Both have the dubious advantage of giving greater '"weight' to extreme
observations than does the Mann-Whitney test (7). Neither, however,
can compare with the latter in simplicity or ease of application. Fur-
thermore the quality of high power against "parametric', i.e. normal,
alternatives, while useful is not an overriding consideration in select-
ing a nonparametric test. It is a useful property in those cases where
populations are normal and variances homogeneous but the experimenter
does not have certain knowledge of this fact, i.e., when a distribution-
free test is necessitated by the experimenter!s ignorance rather than
the population's nonnormality.

f. Application. The applicability of most tests is directly
deducible from the derivation as is the method of application. Further-
more, many, if not all, distribution-free tests are applicable in situa-
tions other than those for which they were originally designed, and it
would be quite impossible to anticipate all such situations and to out-
line the test!s method of application in each of them. Therefore, only
the briefest example will be given of the application of each distribution-
free test, and the "Application'" section will often be used to illustrate
or expand upon points made in presenting the test's derivation.

g. Discussion. Tests which upon superficial examination
appear to be quite distinct may actually be identical or similar in
function, i.e., may ultimately perform the same or nearly the same
mathematical operation. In other cases, although different, they may
be mathematically interrelated to a high degree. Not infrequently the
author of a test overstates, understates or misstates the test's capabil-
ities, Such matters are taken up in each test!s "Discussion' section.

h. Tables. For most distribution-free tests probabilities are
based upon simple combinatorial formulae. The point probability of a
given value of the test statistic is generally a fraction whose numerator
is the number of different ways (combinations) in which that value of the
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test statistic can be obtained and whose denominator is the sum of

the number of different ways in which all possikle values of the test
statistic can be obtained. Such tests are usually exact for small
samples whose N is small enough to permit enumeration of the com-
binations constituting the numerator of the (cumulated) probability
fraction. (The denominator is usually easy to obtain.) The time

and labor involved in these computations increases drastically with
increasing N, however, so that exact tables frequently do not extend
beyond an N of very moderate size. For larger N!s approximate
probabilities may generally be obtained fairly easily from asymptotic
formulae, and at this point the tables, if they continue, become inexact.
The approximation is usually very good for large values of N. There
is sometimes a gap, however, between the largest N for which exact
probabilities have been tabled and the smallest N at which the asymptotic
approximation is gocod.

The existence of adequate tables is an important criterion for
the acceptability of a distribution-free test. There is practically no
limit to the number of distribution-free tests whicli can be devised on
a sound mathematical basis. However, a test for which no tables
have been computed is of very limited value unless exact cumulated
probabilities can be easily computed by formula, or unless the asymp-
totic approximation is good at small sample sizes, neither of which
is likely to be the case.

i. Sources. The survey of literature upon which this report
is based was confined almost entirely to publications written in English.
However, not all of the relevant English publications were reviewed and
only a fraction ot those reviewed are reported. The number of relevant
articles is immense and increases exponentially as one broadens onels
definition of what is nonparametric. An attempt was made only to cover
tests, of broad applicability, whose probabilities can be calculated ex-
actly when samples are small, and which, when sampling from a con-
tinuously distributed population, do not specify the exact form of that
distribution, This criterion, for example, eliminated tests of card
matching, which apparently find application only in experiments on
extra-sensory perception, approximate tests or parametric tests used
in violation of their assumptions, and tests requiring such nonclassical
but specific distributions as a Poisson or an exponential. Despite efforts
at thoroughness, however, it is virtually certain that relevant tests meeting
all these criteria have escaped the writer!s attention; in some cases such
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tests were detected, but were unobtainable., Noc claim is made for
complete coverage; however, it is felt that a core of better known
and more important tests has been covered fairly adequately.

In the following chapters tests have been grouped together
largely on the basis of a common type of mathematical derivation,
sometimes according to the type of sample information used, and
occasionally according to the type of function which the test serves.
Only the simplest, most extensively tabled, and most promising tests
have been treated at length, Sources are referenced in the treatment
of each test and are listed at the end of each chapter. (Occasionally
reference will be made to a source listed in the bibliography of a
different chapter, in which case the Arabic reference number will
be preceded by a Roman numeral indicating the number of the chapter
in which the referenced source is listed.) Because the number of
sources relevant to a given test or to a general topic may be quite
large, those sources regarded as most critical have been indicated
by printing their authors' names in capital letters. Primary sources
(or, in some cases, the nearest thing to a primary source) for a
unique distribution-free test have been indicated by an asterisk.
Sources containing tables of probabilities for a distribution-free
test have been indicated by placing a capital T in the left margin.

If the source contains tables for more than one such test, two T's
are used; and, if a table is an extensive one, the T is underlined.
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CHAPTER 11

TESTS BASED ON THE BINOMIAL DISTRIBUTION

A number of distribution-free test statistics are binomaially
distributed. They are among the simplest, safest, most nearly
exact and most extensively tabled nonparametric tests. Their
statistical efficiency is not the highest, but is generally not so low
as to nullify their other advantages. The sample information used
by most of them is simply the direction of the difference between
two scores, i.e., the algebraic sign of the difference. Binomial
tests are extremely versatile, finding application in testing for loca-
tion, trend (in either location or dispersion), randomness of predict-
ed order, and in the setting of confidence limits for quantiles.
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1. Introduction

Suppose that all of the possible outcomes of an event may
be dichotomized into two mutually exclusive categories, arbitrarily
labeled '"'success'' and 'failure'', these two outcomes having proba-
bilities p and q= 1 - p respectively, Then if the event is permitted
to occur n times, the probability that r of the n outcomes will be

successes is Pr(r) =(Ilf) prqn-r which is the general expression for a

term in the expansion of the binomial (p+q)n.

Proof: The probability that r successes and n - r failures
will occur in a specified order is p'q""Y. For example, letting sub-
scripts indicate order of appearance, the probability for the order in
which all successes occur first, followed by all failures, is the

=7

product (p;) (p,) ... (P,) (a.4;) (a,,5) +.. (q,) =P"q" F. However,

since we seek only the probability of a given frequency of successes,
the probability prqn-r of a given frequency of successes occurring

in a specified pattern must be multiplied by the number of patterns
which r successes and (n-r) failures can assume. If the n units

(p's and gl's) were all distinguishable, the number of unique patterns
would be n?, the number of permutations of n things. They are not
all distinguishable however. In each distinguishable pattern, the r
successes can be permuted with one another in r! ways without
changing the pattern. And for each such permutation of successes,
the n-r failures can be permuted in (n-r)} ways without changing the
appearance of the pattern. The number of permutations, n!, then
must be the number of distinguishable patterns times r!(n-r)!, the
number of ways each distinguishable pattern can be permuted without
altering its appearance. The number of distinguishable patterns is

1 . . .
therefore T(_n—'yt_ , which is, of course, the number of combina-
ri(n-r)!

tions of n things taken r at a time, frequently expressed by the symbol

n s
(+) ¢ The probability of exactly r successes in n trials is therefore
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(?) p q™"T, and the cumulative probability, i.e., the probability of
r or fewer successes in n trials is iz(l)‘ (ril) p1 qn-l.

The binomial term (;1) pTq" ™" expresses the probability for

r successes out of n trials only if the following conditions, implicit
in its derivation, are met:

(a) Outcomes must be capable of being dichotomized (Since
only two outcome probabilities, p and q, are used in the derivation.)

(b) 'i‘he two outcome categories must be mutually exclusive
(since qz1 -p).

(c) The outcome of the n events must be completely inde -
pendent, (Since the same value, p, is used to express the probability
of success on each of the n trials, the probability of success on a sin-
gle trial must not change from one trial to another and, therefore,
must not be influenced by the outcome of any other trial. )

(d) "Events'" must be randomly selected. (The formula

(¥) p°q®T gives the probability that by chance r successes will
occur in n trials if the chance probability of success in a single trial
is p. If events are not randomly selected, then outcomes are sus-
ceptible to nonchance influences.) There must therefore be no bias
or system in the selection of which n trials, out of an infinite popula-
tion of potential trials, to test. Specifically, among other things
this means that none of the valid data may be systematically excluded
from the test.

The above qualifications will appear in modified form as
assumptions for all tests whose test statistic is binomially distri-
buted., Such tests are outstanding among distribution-free tests for
two reasons: First they are extremely simple, both in derivation
and in application. Second exact probabilities for both the point
(20, 28) and cumulative (34, 25, 28) binomial have been extensively
tabled. Thus, while for most distribution-free tests large nl!s re-
quire probabilities to be calculated approximately from asymptotic
formulae, in the case of binomial tests exact probabilities are readily
attainable for many large samples.
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The mean and variance of a binomially distributed variate
are np and npq respectively (for proof see Hoel [ 1-21] pp. 65-67),
and when n is large and p is close to .50 the binomial is closely ap-
proximated by the normal distribution. The critical ratio for r,

the number of successes, is therefore %&.‘.—1/—2 the 1/2

being a correction for continuity. The normal approximation should
not be used except for those cases not covered by the extensive binomial
tables which are now available., The approximation is reasonably good
so long as the product np is greater than 5, Even when this criterion
is met, however, the approximation is likely to be poor at the extreme
tails of the distribution, especially when n is small (say less than 100).
The inaccuracy of the normal approximation can be expectedto increase
therefore with decreasing n, with increasing departures of p from , 50
in either direction, and with decreasing, i.e. more and more extreme,
significance levels.

2. The Sign Test for the Median Difference

a. Rationale. Suppose that n pairs of measurements have been
taken, one member of each pair having been taken under condition A,
the other under condition B, and that a B measurement is as likely to
exceed as to be exceeded by its paired A measurement, Then, if
zero differences are impossible, the differences A1 B can be either
positive or negative and the outcome ''positive'! is bmom1a11y distributed
with probability p=1/2. For example, John Arbuthnott (1) found that
every year from 1629 to 1710 the number of males born in the city of
London exceeded the number of females. If male and female babies
are equally likely, the chance probability of the reported results is

82 . ; .
28 (?) (1/2)n = (1/2)"%, (Arbuthnott obtained this result and inter-

Preted the excess of male births as a manifestation of Divine Providence,
which he believed to be allowing precisely for the greater mortality rate
among males ""who must seek their Food with danger!'', so as to leave a
perfect equality of sexes at the age of mating. )

b. Null Hypothesis. For every Ai-Bi difference, Pr(Ai>Bi) =
Pr(Ai<Bi)=1/2' Sufficient conditions for its validity are that both the A
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population and the B population are continuously distributed and the
population of A - B differences has a median of zero.

c. Assumptions. Since binomial tests require that outcomes
must be of two types only, there must be no zero differences, i.e.,
the members of no pair shall be 'tied.' Frequently this require.ment
is expressed by the more restrictive assumption that the population
of differences is continuously distributed. Since the outcomes of
binomial events must be independent, the sign of the difference for
one pair must have no influence upon the sign of the difference for
any other pair, This means among other things, that a given A
measurement shall be paired once and only once with a measurement
from the B population. Finally, the sample of measurements must
have been randomly selected from the parent population of differences.

d. Treatment of Ties. The null hypothesis is that

= = . Therefore P (A, = B.) must equal
Pr(Ai>Bi) = Pr(Ai<Bi) 1/2 r( i ;

zero. Zero differences constitute a third category of outcomes.

Since the Sign test is based upon the binomial distribution which re-
quires that outcomes fall into two mutually exclusive classes, zero
differences are decidedly embarrassing. They can occur for two
reasons: because a noninfinitesimal proportion of the parent popu-
lation of differences is zero, or because, although this is not the case,
zero differences are obtained due to the inability of the measuring in-
strument to achieve infinite precision. In the former case, the Sign
test simply is not appropriate. For the latter case, various methods
have been recommended for disposing of zero differences. They can
be dropped and n reduced accordingly (14, I-8, 27). Half may be treat-
ed as plusses, half as minuses (8, 27). They may be replaced by signs
""drawn'' randomly from an infinite population half of whose members are
Plusses, half of which are minuses (27). Or all zeros may be treated

as if they had the algebraic sign least conducive to rejection of the null
hypothesis.

The Sign test has greatest power when zero differences are
dealt with according to the first alternative. However, the greater
power resulting from use of this method is not necessarily an argu-
ment for its adoption. A zero, being in a sense '"halfway between'
a plus and a minus suggests that plusses and minuses are equally
likely. By ignoring, i.e. discarding, data which lend support to the
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null hypothesis, one naturally increases the probability of rejecting
that hypothesis and consequently enhances the power of the test. The
probability of rejecting a true null hypothesis has also increased,
however, and the apparent gain in power is attributable to a subtle
increase in the "true', as contrasted with the nominal, significance
level. For example, consider 1000 differences of which 960 are
zero, 13 plus and 27 minus. If half of the zeros are regarded as
plus and half as minus and the two-tailed Sign test is applied to the
493 plusses and 507 minuses, the cumulative probability is . 681,

If the zero differences are discarded and the test is applied to the

13 plusses and 27 minuses, the cumulative probability falls within
the .05 level of significance. Assuming that half the zeros actually
represent plus scores, half minus scores, the '"true'' cumulative
probability is . 681 in both cases. However, in the latter case the
experimenter believes his significance level to be . 05 when actually
the true significance level corresponding to this alleged figure would
be some figure greater than .681. Thus discarding the zeros biases
the test toward rejection.

The "randomization' method preserves exactly the mathemat-
ical conditions upon which the validity of the Sign test depends. How-
ever, it makes little sense experimentally. Normally one interprets
small chance probabilities as implying the presence of a nonchance
effect. But if it is known that pure chance determined a substantial
portion of one's results, then small chance probabilities may imply
unlikely chance effects as strongly as (or more strongly than) non-
chance effects. In such cases the null hypothesis may remain as
reasonable as any alternative hypothesis. Ambiguities may also
arise in marginal situations. Suppose for example that an experi-
menter using the .05 level of significance obtains significant results
after "randomizing' zeros, but discovers that his results would have
a '"chance' probability of .15 had he regarded half the zeros as plusses,
half as minuses., The reverse situation would be equally distressing.

The first three methods of dealing with zero differences are
based upon an implicit assumption that zero differences represent true
differences which, if measured with infinite accuracy, would be found
to be positive half of the time, negative half of the time. However,
if zero differences are due to imprecisiond measurement, as it is
assumed, such a 50-50 split is by no means assured. The "measuring
instrument' might be such that all differences between -.0015 and
+.0040 were measured as zero. One would then expect the preponder -
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ance of recorded zeros to represent true plusses.

None of the methods of dealing with zero differences, there-
fore, is entirely satisfactory. Giving all zeros the sign least condu-
cive to rejection is the safest method while, in the long run, the average
probability error is minimized by treating half the zeros as plusses,
half as minuses. If only a small proportion of the differences are zero,
say less than 5%, one would expect the "error" introduced by zero
differences generally to be of small practical consequence. However,
when zeros constitute a substantial proportion of the data, considerable
caution should be used in applying the Sign test.

e. Efficiency. A normal distribution is symmetrical with median
equal to mean. Therefore, if applied to a normally distributed popula-
tion of differences, the Sign test for the median difference is equally a
test for the mean difference and can legitimately be compared with
Student!s t-test. Under the conditions stated, the one-tailed Sign
test has, relative to Student!s t, an asymptotic efficiency of 2/x or
.637. This same figure is obtained whether the asymptotic efficiency
be an estimate efficiency (4, 44) A. R. E, (15), or an efficiency of
certain other types (7, 15, 16). It refers, of course, to the case
where the discrepancy 6 between the true difference and hypothesized
difference is zero, i.e., very slight. If samples are of infinite size,
the efficiency of the Sign test is independent of the sizea of the signi-
ficance level, but decreases from . 637 to a limiting value of . 500
as § increases from zero to infinity (15).

The small sample efficiency of the Sign test depends strongly
upon the precise definition of efficiency chosen (2). It decreases with
increasing values of n, a and 6 (7). Small sample efficiencies as
high as . 96 have been found (43).

Power functions for the Sign test have been published by Dixon
(7) and by Walsh (42). Stewart (36) has prepared tables giving the
sample size at which a false null hypothesis (p =.50) will have a given
probability of rejection, i.e., testwill have agiven power, at the .05
level of significance, for various ''true' values of p. The test is con-
sistent provided only that p# q, i.e., in the present case provided only
that the null hypothesis is false (14).

f. Application. Subtract each B score from its matched, i.e.
paired, A score. If a small proportion of the differences are zero,
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"assign'' half of them a positive sign, half a negative sign; if there
are an odd number of zero differences, discard one zero difference,
reduce n by one, and proceed as above. Let r be the number of
plusses and n-r be the number of minuses after the zeros have been
"assigned.'" Then the cumulative probability of obtaining r or fewer

plusses by chance if the null hypothesis is true is ,z‘,; (?) Wz
i=

If a two-tailed test is required, one rejects the null hypothesis if this
cumulative probability equals or is less than a/2 or equals or exceeds
l1-a/2. If a one-tailed test is required and the alternative hypothesis
is that the median difference is less than zero, the null hypothesis is

rejected if izrb (I;) 1/2n<a. For the opposite alternative, reject
if the summation equals or exceeds l-a.

g. Tables. Probabilities can be most accurately obtained
from tables of the cumulative binomial (34, 25, 28, 46) entered with

p=.50. Other tables (4, 8, 26, 1-8, 1-23, I-43, I-59) have been
designed specifically for the Sign test.

h, Discussion. Mathematically the Sign test simply tests
the hypothesis that the parameter, p, of a binomial population has the
value .50, In equivalent experimental terms it tests the null hypothe-
sis that the population of A-B differences has a median of zero. The
inference is frequently made that if the median difference is zero, then
the A population and the B population are equally ''good' in a quantitative
sense. Such an inference cannot legitimately be made without introduc-
ing an additional assumption: that the A-B differences are symmetri-
cally distributed about zero. Without this assumption one can legiti-
mately infer that half of the units comprising the A population are superior
to the units with which they happen to be matched in the B puopulation
and that half of the B units are superior to their paired mates from the
A population, but_not that these two ''superiorities' represent equivalent
difference magnitudes, It is to be noted that the assumption of symmetry
requires that the mean difference be zero.

By adding M to each B score before subtraction from its paired
A score, one can test the null hypothesis that the median difference is
M. I the assumption of symmetry can justifiably be made, one can
test the hypothesis that the mean difference is M, or, in other words,
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that the A population is on the average M units '"better'' than the B
population. By multiplying each B score by 1+100p before subtraction,
one can, under the assumption of symmetry, test the hypothesis that
the A population is on the average p percent ''better' than the B popu-
lation. (See 8 or 26)

The preceding discussion has assumed that every A score has
the same parent population and likewise for every B score. Actually
the formula holds good even if every A or B score comes from a differ-
ent population so long as each population corresponding to a given A-B
difference has zero median. The null hypothesis tested is that all of
the populations from which the A-B differences were '"drawn' have zero
median, This type of application should be approached with caution,
however. Suppose, for example, that half of the pairs represent popu-
lations in which Als are truly superior to B!s while the reverse is true
for the other half. Although the null hypothesis is entirely false, the
probability of its rejection is no greater than if it were true. Again,
suppose that for a tenthof the pairs A's are truly superior to B's while
for the remainder there is no real difference. The power of the test
would be much greater if that tenth of the data were tested separately.
Applications of the type described, therefore, may greatly reduce the
power of the test, and even when the null hypothesis is rejected, it is
not at all clear what alternative hypothesis is indicated. Finally, in
this type of application, the modifications described in the preceding
paragraph become meaningless and should not be used.

It has been stated that the Sign test is particularly appropriate
when the members of each pair were subjected to similar treatment,
but when treatments differed from one pair to another. This, of
course, represents a special case of the application discussed above.
Here it is implied that a number of variables may have a real effect
upon the absolute values of the A's, the B's or even the A-B differ-
ences, but that only one variable, the one in which the experimenter
is interested, can have a real effect upon the direction of the A-B
differences, i.e., the signs of the differences. This is not necessar-
ily an unrealistic assumption. For example, the A's and B's might
be positions of seismograph needles during, and an hour previous to,
an hypothesized tremor. The seismographs being located in widely
different parts of the world, the A-B differences would be expected to
vary in size with distance from the source of tremor. Furthermore,
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the numerical size of the difference might be reported in metric units
by some and in British units of measurement by others. These con-
siderations would preclude the use of a t-test, but not the Sign test
since the variable mentioned would affect the size but not the direction
of the differences.

It is extremely important, however, that no variable causing
differences between pairs shall interact with the variable in which the
experimenter is interested, i.e., shall differentially affect the sign of
the difference between members of a pair. Suppose, for example, that
A and B are two strains of wheat and that some of the AB pairs were
grown in a northeastern county, the rest in a southwestern county. If
the former location has a moist climate, the latter a dry one, it may
well be that A is superior to B in one location and inferior in the other.
Subjecting pairs to different treatments, therefore, may introduce subtle
and spurious interactions between '"tested" and '"nontested'' effects with
the result that the power of the test is reduced and the true alternative
hypothesis may differ greatly from the alleged one.

i. Sources. 1, 2, 4, 7, 8, 10, 12, 13, 14, 15, 16, 26, 27, 30,

36, 42, 43, 44, 45, 1-2, 1-3, 1-8, I-11, I-21, 1-23, I-28, I-35, 1-43,
1-54, I-59.

3. The Sign Test for the Median

a. Rationale. Suppose that n observations, Xi‘s, are taken
from a continuously distributed population whose median is M. Then
half of the observations, on the average, should fall above M, half
below, i.e., the number of observations falling above M is binomially
distributed with p=.50. Thus, the number of observations above an
hypothesized median M can be used to test the validity of the hypothesis.
But the number of observations above M is the same as the number of
positive differences if M is subtracted from each observation. The
Sign test for the median, therefore, is equivalent to the Sign test for
the median difference in which the X;!s constitute the A population and
the B population consists of the single value M.

b. Null Hypothesis. For every X,, Pr(Xi>M)=Pr(Xi<M)=1/2.

Sufficient conditions for its validity are that the X's are drawn indepen-
dently and are continuously distributed with a common population median
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M. It is in fact only necessary to assume that the X's are continuous-
ly distributed in the neighborhood of M.

Ca ———L—Assum tions. (l) Pr (Xi=M)=O’ io €., none of the

observations must fall on the hypothesized median.

(2) Whether a given X; falls above or below
M is independent of the position of any other X; with respect to M. This
implies among other things that either the population is an infinite one,
which will be the case if it is continuously distributed, or sampling is
with replacement.

(3) The X;'s must have been randomly
selected from their respective populations.

d. Treatment of Observations Falling on th iz
Median. See 2. Treatment is analogous.

e. Efficiency. See 2. Efficiencies quoted under 2 apply with
equal validity to the test for the median.

f. _Application. Count the number, r, of X's which are
smaller than M. If a small proportion of the X's equal M, count
half of them as smaller than M., If there are an odd number of such
tied X's, discard one of them and reduce n by 1. For a two-tailed
test at the level a, reject the null hypothesis if

Za (D) 1/27 < a/2 or > 1 - a/2. If the alternative hypothesis for a
one-tailed test is that the population median exceeds M, reject the
null hypothesis if 1};5 (Ii]) 1" < a. For the opposite
one-tailed alternative hypothesis, reject if the summation >1- a.

g. Tables. See 2 and the paragraph below.

h. Discussion. If the X's are arranged in order of increasing
magnitude with subscripts indicating rank in that order (1= smallest,
n=largest), then if r observations are below M, M exceeds the value
Xr’ i.e., M>Xr- Therefore, rejecting the null hypothesis because r
observations have fallen below the median is equivalent to rejecting
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it because the median exceeds X .. Walsh (43) has prepared tables

of probabilities for the Sign test ?or the median which call for this
approach.

If the X's all come from the same continuously distributed
population whose mean equals its median (which will be the case if
the population is symmetrically distributed), the Sign test for the
median is equivalent to & test for the mean. In other words at
the cost of introducing two new assumptions, homogeneous popula-
tions and symmetrical distribution, the Sign test for the median be-
comes a Sign test for the mean. By adding (or subtracting) a con-
stant C to every X before applying the test, the hypothesis can be
tested that the population mean has '"slipped' a distance C below (or
above) a value it is known to have had at some earlier period.

i, Sources, See 2,

4, Cox and Stuart!s S2 Sign Test for Trend in Location

a. Rationale. Suppose that 2n measurements have been record-
ed or are available in an order of sequence and it is desired to test whe-
ther the sequence may contain a monotonic, i.e., nonreversing, trend.

If there is no trend of any kind, i.e., if sequential position has no effect
upon measurement magnitudes, these magnitudes will be randomly dis-
tributed in sequence. If measurements are divided into independent pairs
and if in each pair the measurement later in sequence is subtracted from
the earlier measurement, the sign of each difference will be as likely

to be plus as to be minus. If zero differences are impossible, the num-
ber of differences of one sign will be binomially distributed. On the
other hand, if a unidirectional trend exists differences of one sign will
tend to predominate.

b. Null Hypothesis. Let subscripts represent the position of
a given measurement in the sequence of 2n measurements. The null
hypothesis, then, is that for every

i i = < = 2
X, withi < n the P_ (x, > xi+n) EL, (X, X, o )

Sufficient conditions for its validity are that the X!'s are continuously

distributed and are randomly related to sequence, i.e., contain no
trend.
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c. Assumptions. (1) Pr (X'=Xi+n) =0 for every i<n,
i.e., the members of no pair are tied.

(2) Whether a given Xi falls above or below

Xi+n is independent of the outcome for any other pair.

(3) The X's are randomly selected.

d. Treatment of Ties. The authors recommend counting
half the zero differences as plusses, half as minuses. Also see 2,.

e. Efficiency Applied to populations known to be normally
distributed, the SZ test for trend in location has asymptotic relative
efficiency . 78 with respect to the best parametric test, based on the
regression coefficient (37). Under the same conditions, it has
A, R, E, .79 compared to Spearman'!s or Kendall's rank correlation

tests used as tests of randomness (5). For other comparisons, see
Table I.

f. Application. If the total number of measurements is not
an even number, drop the middle measurement to make it so. Let
2n stand for the number of measurements remaining. From each X,
in the first half of the sequence, subtract the corresponding measure-
. ment Xi+n in the second half. If a small proportion of the differences
are zero, assign half of them a plus, half a minus. If an odd zero
remains, discard it and reduce n by 1. Let r be the number of posi-
tive differences. Then for a two-tailed test at significance level a

reject the null hypothesis if ’E; (2) 1/2n either equals or is less

than a/2 or equals or exceeds 1-a/2. For a one-tailed test at the level a
: oy (2 r n n g

reject the null hypothesis if _Z, () 1/2" < a if alternative hypo-

thesis is an upward trend (or >1-aif alternative hypothesis is a down-
ward trend).

g. Tables. See 2.

h, Sources. (5, 11)
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5. Cox and Stuart!s S3 Sign Test for Trend in Location

a. Rationale. See 4, substituting "3n'" for '""2n".

b. Null Hypothesis. Let subscripts represent the position of
a given measurement in the sequence of 3n measurements. The null
hypothesis, then, is that for every

X, withi < n the P_ x, > xi+2n) =P (X, <X, )= 1/2

Sufficient conditions for its validity are that the X's are continuously
distributed and are randomly related to sequence, i.e., contain no trend.

2 : S T 1" 1" 1"
c. Assumptions. See 4, substituting Xi+2n for Xi+n .

d. Treatment of Ties. See 4,

e. Efficiency. Applied to populations known to be normally
distributed, the S, test for trend in location has A, R. E. .83 with
respect to the best parametric test, based on the regression coeffi-
cient (37). Under the same conditions, it has A, R. E, .84 compared
to Spearman's or Kendall's rank correlation tests used as tests of
randomness (5). For other comparisons see Table I.

f. Application. If the total number of measurements is not
divisible by 3, "add' one or two 'dummy' measurements in the middle
of the sequence to make it so. Let 3n stand for the number of meas-
urements as modified. From each Xi in the first third of the sequence,
subtract the corresponding measurement X;,5  in the last third. The
data in the middle third will not be used. If a small proportion of the
differences are zero, assign half of them a plus, half a minus. If an
odd zero remains, discard it and reduce n by 1. Let r be the number
of positive differences. Then for a two-tailed test at significance

; b 3 r ;

level a, reject the null hypothesis if xz=)0 (2) 1/Zn either equals or

is less than a/2 or equals or exceeds l-a/2. For a one-tailed test

at level a, reject the null hypothesis if x);g (i) I/Zn < q if alterna-
tive hypothesis is an upward trend (or > l.a if alternative hypothesis is

a downward trend).
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g. Tables. See 2.

h. Discussion. The S; test uses only 2/3 of the raw data
employed by the S, test; however, the members of each pair of meas-
urements whose difference is taken are 1/3 farther apart. The net
result is an increase in efficiency. If a real trend exists, then the
farther removed two measurements are in sequence, the greater the
expected difference in magnitudes and the more likely that the sign of
the difference will betray the direction of the trend. The SZ test,
however, has one advantage. Since it uses all of the data, statistical
inference can be extended to the entire parent population. Strictly
speaking, inferences based on the S, test cannot legitimately be
extended to the middle third of the sampled sequence, since a temporary
trend occupying only this portion could not be detected.

i. Sources. 5, 11, 37.

6. Cox and Stuart's S; Sign Test for Trend in Dispersion

a. Rationale. Suppose that 3kn measurements have been re-
corded in order of sequence and it is desired to test whether the disper-
sion of the measurements about a linear regression line changes mono-
tonically with position of measurements in the sequence. If the true
dispersion remains constant, then the ranges of consecutive sets of k
measurements should vary on a chance basis only. And if the range
of a subsequent set is subtracted from that of an earlier set, the dif-
ference is as likely to be positive as to be negative. If zero differences
are impossible, the number of differences of one sign will be binomially
distributed. On the other hand, if dispersion changes monotonically
with position in sequence, differences of one sign will tend to predom-
inate.

b. Null Hypothesis. Let w; represent the range of the i th
consecutive set of k measurements. The null hypothesis, then, is

- 1 3 > = < O = .
that for every w; with i< n the Pr (Wi Wi+2n) Pr (Wi W1+2n) /2

Sufficient conditions for its validity are that the X's are continuously
distributed with constant dispersion about a linear regression line.

c. Assumptions. (1) Pr (wi = Wi+2n) =0 for everyi<nm,
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i.e., the members of no pair are tied. If the X's are continuously
distributed, the w's will be also and the assumption will be satisfied.

(2) Whether a given Wy falls above or below
w. is unaffected by the outcome for any other such pair.
i+2n

(3) The X's are randomly selected.

d. Treatment of Ties. See 4.

e. Efficiency. Applied to populations known to be normally
distributed, the S, test for dispersion has A,R.E, of .71 compared to
the maximum like:iihood test (5).

f. Application. The selection of the integer k is arbitrary and
will not affect the validity of the test; however, it can be expected to
affect the test's power. Letting N stand for the total number of meas-
urements, the following rule is suggested by the authors:

take k = 2 if N <48, takeR = 3 if 48 <N <64, take k = 4 if 64 < N <90,
take k = 5 if N > 90. Let n be the integral part of N/3k and drop N-3kn

measurements from the middle of the sequence. Divide the 3kn remain-
ing measurements into 3n consecutive sets of k measurements each.
Find the range of measurements within each of the 3n sets. Finally,
using these ranges as scores or measurements, proceed exactly as in

the S3 test for trend in location.

g. Tables. See 2.
h, Discussion. This test can be made a test for trend in

variance, (or standard deviation) simply by substituting this term for
"range'" and applying the test as outlined above.

The authors do not suggest the use of the Sy test to test for dis-
persion, although it obviously could be legitimately used for that purpose.

i. Sources, 5, 1l.

7. Noether!s Sequential Test for Linear Trend

Cox and Stuart's tests for trend in location give specific values
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to a constant, C, in a more general test discussed by Noether (23, 24).
The latter author, in effect, sets the null hypothesis that

Pr (Xi > Xi-l-C) = Pr(xi < Xi = 1/2 and examines the optimum value

+c)

of C for a sequential probability ratio test of that hypothesis.

8. Noether'!s Binomial Test for Cyclical Trend

a. Rationale. Suppose that 3n measurements have been re-
corded or are available in order of sequence and it is desired to know
whether the sequence may contain a fluctuating or cyclical trend. If
the measurements are continuously distributed and there is no trend
of any kind, no two measurements will be equal, and the measurements
will be randomly related to sequence. Any three consecutive meas-
urements will be equally likely to have any of the six sequences repre-
sented by the six possible permutations of three things. However, of
these six sequences only two are monotonic, i.e., ascend or descend
without reversals, while the remaining four change direction in the
middle. For example, if the three measurements are ranked, the
ranks will be found to have one of the six sequences: 123, 3 2 1,
132,231, 213, 312, the underlined sequences being mono-
tonic. The probability of monotonicity for such a set of three meas-
urements is therefore 1/3 if the sequence is random and the meas-
urements are continuously distributed. And if the 3n measurements
are divided into n independent sets of 3 consecutive measurements
each, the number of monotonic sets will be binomially distributed
withp=1/3. On the other hand, if a cyclical or fluctuating trend of
any but the shortest possible ""wave length'" exists, one would expect
more than 1/3 of the sets to be monotonic.

b. Null Hypothesis. For every

<
> Xy TP Xy <X

i<n, the P (X4 > Xy

< = 5
3i-1 X3i-2) 1/3
Sufficient conditions for its validity are that the X's are continuously
distributed and the size of the X's is unrelated to their position in
sequence.

c. Assumptions. (1) Pr (X3i=x3i+1)=0 and Pr (X3i+1=x3i+2)=0
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for every i <n,i.e., adjacent scores in no set are tied.

(2) Whether or not any given set is mono- .
tonic is independent of the monotonicity or nonmonotonicity of any other

set. Among other things, this means that no X is used in more than

one set.

(3) The X's are randomly drawn.,

d. Treatment of Ties. Ties are a practical problem only
when the tied scores are members of the same set. If the first and
third scores are tied and the second is not, the set is clearly non-
monotonic and there is no ambiguity. If adjacent members of a set
are tied, the set is as likely as not to be monotonic; therefore, half
of such sets should be counted as monotonic, half as nonmonotonic
(the odd set, when it exists, being discarded and n reduced by 1).
If all three members of a set are tied, the chance probability of
monotonicity is obviously 1/3, and one third of such sets should be
counted as monotonic (one or two sets being dis¢arded and n reduced
accordingly if the number of such sets is not divisible by 3).

e. Efficiency. Noether states that he does not believe the
test to be highly efficient.

f. Application. If the total number of measurements is not .
divisible by 3, drop one or two measurements from the middle of the
sequence to make it so. Let 3n stand for the number of measure-

ments remaining. Divide these 3n measurements into n independent,
i.e. nonoverlapping, sets of 3 consecutive measurements. Count

the number of monotonic sets, treating tied members of a set as out-
lined above. Call this number r and call the total number of sets
used n. Then for a one-tailed test at significance levela reject the

null hypothesis if x@_:: (2) (1/3)° (2/3)"7* < a. This tests H,

against the one-sided alternative that once a direction is taken it
tends to persevere for a longer than chance period. A two-sided

test would include the alternative that direction fluctuates more rapid-
ly than would be expected by chance. However, such a contingency
seems unlikely to be of great practical interest, since such a fluctua-
tion in this case would very nearly amount to alternation of direction,
i.e., change with every measurement.
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g. Tables. 34, 25, 28.

h. Discussion. This test is also presented by its author as
a sequential probability ratio test.

Lehmann (17, 38) has briefly proposed a test of the hypothesis
that two populations are identical, which is analogous to Noether!'s test.
If 2n scores have been drawn from an X population, and 2n from a Y
population, and if X's are paired at random with one another and then
with a pair of likewise paired Y's, there will result n independent
quadruples consisting of two X!'s and two Y's. If the null hypothesis
is true, and the X's and Y's are continuously distributed, the chance
probability that in a given quadruple both X's will either be greater
than or less than both Y'!'s is 1/3. The number of quadruples for which
this is the case will therefore be binomially distributed with p = 1/3 and
can be used to test the hypothesis of identical populations. The test is
consistent if the sampled populations are continuous, ties are random-
ized and the alternative hypothesis is that p# 1/3.

i. Sources, 24.

9. Mosteller!s Test of Predicted Order

a. Rationale, Suppose that n individuals each are to be tested
under k conditions and the experimenter has reason to believe that he
can predict the order of excellence of performance under the k conditions.
If "performance" is continuously distributed so that no two conditions
will result in the same score, then for any one individual there are
k! orders in which the k conditions could be arranged. If performance
is independent of the conditions under which it is tested, then each of
the k! orders is equally likely with probability 1/k!. If performance
is truly unrelated to differences among tested conditions, then the num-
ber of individuals whose order of performance has been correctly pre-
dicted is binomially distributed with p = 1/k! . On the other hand,
if performance is related to conditions and if the experimenter has

correctly predicted the relationship, the predicted order will tend to
exceed its chance expectation.

b. Null Hypothesis. Pr (Order Predicted by Experimenter)
= 1/k!. Sufficient conditions for its validity are that measurements
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are continuously distributed and unrelated.to the specific experimental
conditions under which they occur.

c. Assumptions. (1) None of the performance scores for a
single individual can be tied.

(2) The order of performance excellence
for any given individual is unaffected by that of any other individual.

(3) Individuals and individual's scores
are randomly selected.

d. Treatment of Ties. Ties are no practical problem unless
one of the possible ways of 'breaking'' the ties results in the predicted
order. In those cases, for every group of t tied scores, there will
be t! ways of breaking the ties, and ifthere is more than one such group
for a single individual, the number of ways of breaking the ties will be
the product of these factorials. Therefore, for each individual whose
order of performance contains ties and could be the predicted order
if the ties are broken properly, find the number of ways in which ties
could be broken. Sum these over all such individuals, and call the
total '"D''. Let N stand for the number of such individuals. Then
N/D is the proportion of these individuals whose order should be re-
garded as the predicted one, and (N/D) N or N2 /D individuals should
be counted as having the predicted order. Simpler techniques, which
err in the direction of conservatism, are to regard the N individuals
as not having the predicted order, or to discard the N individuals and
reduce n by N,

e. Efficiency. Apparently unknown.

f. Application. Treating ties by one of the techniques outlined
above, count the number of individuals whose performance under the k
conditions conforms exactly to the predicted pattern, i.e., whose per-
formance excellence under each condition has the rank predicted for
performance under that condition. Let this number be r and the total
number of individuals tested be n. Since a smaller than chance num-
ber of individuals having the predicted order is unlikely to be of interest
to the experimenter, only a one-tailed test of the opposite situation will
be outlined. For a one-tailed test at the level a, reject the null hypo-
thesis in favor of the alternative that the predicted order has a greater
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than ''chance' probability if izz;? (ril) (1/k1)r (1- 1/k3 )n-r < a.
’ g. Tables. 34, 25, 28.

h. Discussion. It is very important to remember that this
test tests only that if the k conditions affect performance differen-
tially the experimenter has done a better than chance job of predict-
ing the pattern. Suppose that of 15 conditions 10 affect performance
in the same way and are therefore equivalent, while the remaining 5
conditions affect performance differentially. If the experimenter cor-
rectly assigns one of the ranks from 1 to 15 to each of the five differ-
entiating conditions, the predicted rank order will occur more fre-
quently than 1/15' of the time and the null hypothesis will tend to be
rejected more than q of the time. However, the predicted rank
order will not be correct for the 10 equivalent conditions since it
will imply that they differ, which they do not. Suppose again that
five conditions arranged in order of "excellence'" are A BCDE
and that the experimenter has predicted the order ABC ED. I
the conditions differ greatly relative to performance variability, the
experimenter's predicted order may be expected to occur less than
1/5! of the time; while, if performance variability is large relative
to the true differences among conditions, the experimenter's predicted
order may be expected to occur more than 1/5' of the time and the null

. hypothesis will tend to be rejected more than a of the time. The temp-
tation to accept the predicted order as the correct one, when the null
hypothesis is rejected, should therefore be resisted.

i. Sources. 34 (Introduction, pp. xxxvi-xxxvii).

10. Confidence Limits for Quantiles

a. Rationale. Assume that a random sample of n independent
observations has been taken from an unknown but continuously distributed
population, and that it is desired to establish confidence limits for the
magnitude of a population quantile, Q. This quantile may be a percen-
tile, quartile, median, or, more generally, that population magnitude
below which some specified proportion p of the population lies.

Let the n sample observations be arranged in order of increas-
ing magnitude with subscripts indicating rank position in that order, i.e.,
from smallest to largest the observations are X,, XZ’ X3, veeey Xr’

...... » Xgo vvees X oy X 1» X . Also, let € be aninfinitesimally
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small positive magnitude. If Q lies at or below X, + ¢ then r or
fewer sample observations have fallen below the population quantile

Q, the chance probability for which is 123:; (Iil) p' (1-p)*7', where

P is the proportion of units in the population whose magnitude is less
than Q. Likewise, if Q lies at or above Xs - € thenn - 8 +1 or fewer
sample observations exceed Q, or equivalently, s - 1 or more obser-
vations are smaller than Q. The chance probability for this is

n n, i n-i
1§S-1(1)p (l’p) .

With qualifications which will be outlined under '"Assumptions",
these two probabilities may be regarded as the probabilities that Q lies
below X. + € and that Q lies above X5 - € respectively. If s is larger
than r, the events referred to by these two probabilities are mutually
exclusive (since € is an infinitesimal)., Therefore the nrobability
that Q is neither below X,. + € nor above Xg - € is

r n, i n-i n n, 1 n-i s-2 ,n, i n-i

and this is equivalently the probability that Q lies between X. + €
and X -€ Since € is an infinitesimal, it is also the probability that
X <Q<X.,.

r s
E b. Assumptions., Random sampling and independent obser -
vations are assumed for reasons given in (1), The assumption of
continuous distribution is required in order to rule out tied observa-
tions. Actually, ties become a practical problem only when they
occur at the critical end points of the confidence region, i.e., when
X, is tied with X, ) or X with X__;. Such ties render the end points
of the confidence region indistinct and impose an additional (see next
assumption) element of inexactitude upon the calculated confidence
level, If X. and X_.,; are tied, for example, then X,. + € cannot be
greater than X, and equal to or less than X ., as required by the deri-
vation. The tied observations X and X, represent a third category
of outcomes, e.g., on rather than above or below the median, thus
rendering the binomial an inappropriate mathematical model. The
assumption of a continuous distribution is also required because it
implies an infinite population. If the population is infinite, the prob-
ability of an observation smaller than Q is p for every observation;
if the population is finite, the probability for every observation after
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the first depends upon the outcomes of the previous drawings. The
final assumption is incompatible with the immediately previous one.
It is that there is zero probability that the population quantile Q lies
between X .. and X _,, or between X _; and X_ . The probability

. -2 ,n, i n-ij
that Xr <Q< XS was derived to be i=¥+1 (i) p (1 - p) ;
however, this is precisely the same probability which would have been

obtained for the event Xr 1 <Q ixs-l' But this implies that

+

= < < = 1
Pr (xr <Q< xr+1) 0 and that Pr (XS__1 Q Xs) 0 which offends

commnon sense. Phrased differently, the derivation given under
""Rationale'' took € to be an infinitessimal, but would have led to the
same results if € had been any positive value such that

Xr ¥ € <Xr+1 and Xs_l <Xg- e Again, this obviously implies the
untenable assumption that Q cannot occupy the region between X, and
X;:41 or between X _; and Xg. The reason for the discrepancy is
simply that ''r observations below Q' and '"r+1 observations below Q"
are two "adjacent'" eventualities in a discrete distribution of "number
of sample observations below the population quantile Q"., Since this
is a discrete distribution of frequencies, there is no event 'in between"

the two named. However, ''population quantile is X_' and 'population
quantile is X ;' are nonadjacent eventualities in a continuous distri-
bution of magnitudes assignable to the population quantile. An error

has therefore been introduced by using a discrete distribution, i.e.
the binomial, to express probabilities for a continuously distributed
variable. In terms of confidence limits, the error is no larger than

the difference between the confidence limits Xr <Q <XS and X <Q§Xs

r+l-— -1°

c. Treatment of Ties. If either X, and X_,; or Xs_1 and
X are tied, it is suggested that the confidence region be changed
(i. e. shifted, expanded or contracted) so as to have untied endpoints.
The conservative, i.e. safest, approach would be to reduce r or enlarge
8 to the extent necessary to include within the confidence region all ob-
servations which had been tied with the endpoints. The confidence
level will, of course, have to be recalculated for the new confidence
region determined by the reassigned values of r and s,
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d. Application. Let Q be the unknown magnitude of the popula-
tion score below which a specified proportion p of the population scores ‘
lie, Draw n sample observations from this population and rank these
.observations from smallest (1) to largest (n). Ties should be dealt with

as outlined in the preceding paragraph. Take 1@:;? (ril) p' (1-p)°7"

to be the confidence level for the hypothesis that Q lies in one of the
following confidence regions. If the most conservative probability
statement is desired, take Xr <Q< X, as the confidence region.

However, if greatest accuracy is desired in the sense of minimizing

Xr-*-Xr-l-l Xs- 1+Xs
the error, take the confidence region to be — < Q< s
The former will usually be the more conscionable procedure. The

values p, r, and s must, of course, be selected prior to sampling.

L4

e. Tables. 34, 25, 28, See also 19, I-8 p. 360,

f. Discussion. The a priori probability that the magnitude

of the rlCh ranked observation will be less than Q is not the exact

probability that the magnitude obtained for the rlCh ranked observation
will be less than Q. Even in the obtained sample, Xr could be assigned ‘

any magnitude between Xr_ 1 and Xr+1, and still be the rth observation
in order of magnitude. The range of magnitudes "represented" by Xr’
X, TR X X

r " of T

then, might be considered to be ol to +1 , l.e,, the

Z

point halfway between Xr and the next lower magnitude to the halfway

point to the next higher magnitude. Then if the rank of r represents

X +Xr+1 ' r n, 1 n-i
magnitudes as high as , the summation f‘::O (i)p (1-p)
Xr-‘_Xr-l-l
would give the probability that Q lies below = rather than

below Xr' Obviously, then, the probability that Q is less than or equal
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to Xr is no greater than 1@8 (?) p1 (l-p)n-l. Therefore, we can be con-

fident at least at the level z ol ( By S -pP* 2 st X_<Q<X_. By

introducing an inequality then we can make a definitive probability
statement which takes account of the error discussed under the last

"assumption'. It is that P (X <Q<X ) —r+1 ( )p (1- p) . Also,

if instead of the most conservative probability statement, we wish to make

X X X -l-Xs

the most nearly accurate one, we can take rtl < Q<

as the most probably '"true'" confidence interval corresponding to the

confidence level .E 1 ( )p (1- p)

If Q is taken to be the population median, the confidence level

becomes simply Er+1 ) 12

It is important to note that the '"error' implicit in this method
appears only when setting confidence limits for the unknown magnitude
of a specified quantile, Q. If the magnitude of Q is hypothesized to be
a single specified value, Q', then an exact test of the hypothesis
Q = Q' can be made by rejecting if Q' lies outside of the confidence
limits Xr < Q< Xs.

The methods just discussed establish confidence limits for
the unknown magnitude or score below which a fixed proportion of the
population lies, Binomial methods have also been suggested (3, 6, 31)
by which to obtain confidence limits for an unknown population propor-
tion on the basis of the proportion of an obtained sample corresponding
to a specified category. These methods, however, appear to be cumber-
some, inexact, or both,

g. Sources, 19, 32, 40, (See also 3, 6, 9, 21, 22, 31, 33,
and I-8 pp. 320-323, 360.)
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CHAPTER III

THE MULTINOMIAL DISTRIBUTION

The multinomial distribution is important in a study of distribution-
free tests because it plays a role in the derivation of a number of exact
tests. It is also the exact distribution appropriate to, but too compli-
cated for, the type of test situation in which the chi square statistic
is commonly used. Chi square is in fact derived from the multino-
mial by means of a series of approximations, tantamount to assump-
tions, which render chi square inexact when sample size is not in-
finite, and which necessitate considerable skill in applying it properly.
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1. Derivation and Assumptions

a. Derivation. Let an event have k possible outcomes, designated
by subscripts 1, 2, ..., k, and let these outcomes be mutually exclusive
and independent and have probabilities pl, Pys oovs pk such that

iz-;l p.= 1. If the event is allowed to occur n times, the probability
N

that the respective frequencies of occurrence of the various outcomes
will be exactly nl, n'z, . oy M s

k n
' p.i
L leli pI;z Srahe pik, or n! _11( -;'— . Proof: The probability
nll nz.' nk! e B

that the outcomes will occur exactly Ny Doy eee, D times respectively

and in a completely specified order (for example, the order in which

the first n, outcomes are those whose probability is Py the next n,,
cqs . s n ny n :

those whose probability is Py etc.) is pll Py eee pkk . To obtain

the probability for these frequencies, but in any order, the preceding

product must be multiplied by the number of distinguishable orders.

The n outcomes can be permuted in n! ways. But in any one of these

permutations, there are n, outcomes of the first category which are

the same and which can be permuted among themselves in nll ways

without changing the appearance of the order. And for each of these

nl.' permutations, the outcomes of the second category can be permuted

with one another in n,! ways without changing the appearance of the ori-
ginal order, etc. There are thus nll nzl oo nk! ways in which each
distinguishable order pattern can be permuted without creating a pattern
distinguishable from it. Since n! is the number of distinguishable pat-

terns times nl.' nzl s nk! , the number of distinguishable patterns of

1
order is = and the probability that in n trials the k cate-
nl.' Nyt e nk!

gories of outcomes will occur Ny Doy eee Iy times respectively is

n, n n
p,! pzz .o+ PLk-

b. Assumptions, Since, in the derivation , the same value, p.
was taken as the probability for outcome i in each of its n, occurrences,

58



p; must not vary from event to event. The outcome of a given event
must therefore be independent of the outcomes of any of the n-1 other
events, Not only must the probabilities of the various possible out-
comes of an immmediate event be independent of the actual, observed,
outcomes of the previous events, they must also be mutually exclusive.
This assumption is necessitated by the fact that the probability of a
given set of n outcomes was obtained in the derivation by taking the
product of the n individual outcome probabilities; to obtain compound
probability in this fashion, the individual probabilities must be mutually
exclusive. (See Mood I, 30-36). Another assumption is that

'
.Zk H =N, Unless this is the case, e does not
i=]l i Bat B woe B
Lt 2 k
give the number of distinguishable orders of obtained outcomes as re-
quired in the derivation, and, in fact becomes meaningless. Since

k mutually exclusive outcomes are recognized as possible,
k

k
iEI p;, must equal 1. Otherwise a real probability, 1 '151 P;s

would exist for outcomes in an additional category or categories not
considered. (Furthermore, the occurrence of such uncategorized

k
outcomes would mean that n would be greater than iz"l ni') Finally,

since P» P» etc. are chance probabilities, sampling must be random,

i.e., the n events or trials must be selected on a chance basis from

the infinite number of potential events available. Specifically this means,
among other things, that no bias shall have operated to exclude valid but
"unfavorable' data from the test.

Use of the multinomial distribution in statistical tests requires
that the probabilities for all of the possible outcomes be known exactly

n,
o |
and be included in the formula n!ig1 —il-.,— It is important, however, to
i
recognize that the experimenter is free to define both the sample space
in which he is interested and the categories which divide that sample
space into k mutually exclusive parts. The experimenter must, in
fact, be careful to do this in such a way as to define precisely that situa-
tion in which he is interested. If he fails he will obtain an exact prob-
ability for a situation in which he is not interested, and this probability
will differ, perhaps considerably, from the exact probability for the
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situation in which his interest lies. For example, in coin tossing,

in addition to "heads'' and ''tails'", the outcome category '‘on the rim"
has finite probability which usually cannot be specified. Therefore,
although heads and tails have equal probabilities, these probabilities
are unknown since their sum is notl. By defining his sample space
as that including only those outcome categories in which the coin lands
flat, the experimenter enables himself to specify as .50 the probability
of heads and the probability of tails. The experimenter is no better
off, however, unless his interest is confined to the sample space con-
sisting only of heads and tails, i.e., is confined to the frequency of
heads relative to tails rather than tosses, Again, the experimenter
may be interested in broader categories than those into which his data
are fitted. In such cases he should use the categories in which he is
interested rather than those in which the data are available., For ex-
ample, in tossing two coins simultaneously the possible outcomes will
be defined to be two heads (Pr: 1/4), a head and a tail (P 1/2), and
two tails (Pr= 1/4). Suppose that the two coins have been simultan-
eously tossed n times and that the frequencies of the respective out-
comes named above are np, n, and nj. If the experimenter is inter-
ested in the point probability of the obtained frequencies for the outcomes
n!

T 1 1
nl. n2. n3.
the other hand, if he is interested in the probability of the obtained

frequencies for the recategorized outcomes, ''coins have same side
up" (P_= 1/2) and "coins have different sides up" (2= 1/2), the ob-

stated, the proper formula is (1/4)nl tns (1/2)nz. On

tained frequencies are n1+n3 and n, respectively and the probability

1
is T +r?')fn2, (1/2)n1+n3 (1/2)nz. The probabilities for the same
1 3 L 2 L]

data under the two different categorizations of outcome are not the
same:

n n

; ; = (1/9™ ¥ (1/2)%2 9 (n1+n3‘;f = (1/2)"1¥73 (1/2)%
T hT .

— .].n : (1/4)n1+n3

1
? (1/2)
1 3 = (n1+n3;.' /

ny +ns

(B

1 ny +n3 1
n L] n L] (1/2)

3 Oy = o #05)

1~
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(

1
(n1+n3)' 2 2T +n;3
By D =
1° 73
n1+n3)?_ ,my +n3
n, )=
. ' N N
Substituting N for n1+n3, the questioned equality becomes (n ) 2 2
1
which is obviously absurd since (1;1) varies with the particular values
1
of n, and Ngs while ZN does not, varying only with their sum. The

reason for the discrepancy between the two probabilities is that one

states merely that n, +n; tosses result in either two heads or two tails

without specifying precisely how many of these shall be two hea@s;-the
other probability does specify this further and much more restrictive
information. The latter probability is, therefore, much smaller than
the former.

The multinomial distribution is seldom used directly as the
basis of a statistical test, This is partly attributable to the fact that
the exact probabilities for the various outcome categories, although re-
quired by the test, are seldom known; and it is partly because, unless
n is quite small, computation of cumulative probabilities, i.e., signi-
ficance levels, is likely to be extremely time consuming. Nor is this
distribution extensively tabled except for the special case where k=2,
i.e., except far the case of the binomial distribution. The reason for
the lack of extensive tables is obvious: the number, 2k - 1, of required
parameters is prohibitively large.

2, The Chi Square Approximation to the Multinomial

Because chi-square occupies a prominent position in most
elementary statistical texts it will be assumed that the details of its
application are familiar to the reader. Because it is one of the most
misunderstood and misused of statistical tests, its theory and the hazards
of its misapplication will be discussed in detail,

The chi-square distribution is derived from the multinomial,
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three approximations being required in the derivation and therefore
qualifying the use of chi-square, The first approximation consists
in replacing the factorials in the multinomial

T le11 pIZ12 coo pik by their Stirling approximations.

The second approximation 'is similar in character to the familiar

one by which an expression of the form (l+x/m)rn is replaced by e™
when m is large'" (27). The final approximation consists in replacing
by an integral the discrete summation representing the cumulative
distribution function,

Each of these three approximations presupposes infinite,
i.e. very large, n's and becomes increasingly poor with diminishing
sample size. KEach is strictly valid only for samples of infinite size.

The first two approximations together are equivalent to sub-
stituting for the multinomial distribution its multivariate normal
approximation. At this point the assumption is necessitated that, for
each category, the observed frequencies are normally distributed
about the expected frequency as a mean., For a single multinomial
category, outcomes are binomially distd buted; therefore replacing
the multinomial distribution by its multivariate normal approximation
is equivalent to substituting the univariate normal distribution for the
true binomial distribution of outcomes within each multinomial cate-
gory. In fact, the working formula by which data are referred to the
chi square tables can, for the case of one degree of freedom, be easily
derived by making this substitution. Consider a binomial variate
with the probability p for a single event. The point probability that

| -
it will occur r times in n trials is T,—z%)-, pr (l-p)n r, or, if the

normal approximation is used, the corresponding cumulative prob-
r-np
N np(1-p)

mean and N np(1-p) the standard deviation of the binomial distribution.
If both sides of the equation are squared and numerator and denomin-
ator of the right side are multiplied by n, it becomes

ability is that of the '"normal" deviate ¥ = , np being the

2
XZ o) N Now substitute {  for r and f_ for np, giving
1

np{n-np) €1
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f - f - -
2 n O el) (fol fel) (fol fel)

X =~F @1 )y = 7 et

(531 e) el (S5

2 2
(fol —fel ) (n-f . _n+fe1 )
= f & n-f ¢
€) €1

If now f is substituted for n-f and { for n-f ,
€2 e 02

1 01
(£ -f ) (£ -1 )°
2 01 e) O2 €2
% = i + 7 which is the formula used to cal-
€l €2

2 .
culate ¥ with one degree of freedom from data in which f0 and fe
1 1

are the observed and expected frequencies of occurrence and f and
oF]

fez are the corresponding frequencies of nonoccurrence. (It is easily

seen from the foregoing that chi is normally distributed when chi
square is based on a single degree of freedom.,)

The assumption that observed frequencies are normally
dis tributed about their expected frequency is, of course, incapable
of being met exactly unless n is infinite at which point the binomial
distribution and its asymptotic normal "approximation' are identical,
The normality assumption is therefore equivalent to the ""assumption'
that n is infinite, or, since the expected frequency, f , equals np.,
that all expected frequencies are infinite, e .
In more practical terms,
the "assumption' of normal distribution of observed frequencies will
be negligibly violated if the following conditions exist: (a) n is so
large that for every p. # .50, the true, i.e. binomial, distribution
of observed frequencies within each category has no more than neg-
ligible asymmetry; this must be the case if the binomial is to be
well approximated by the 'fitted' normal distribution which is sym-
metrical, (b) n is so large that for each category the area of the
"fitted" normal curve covering impossible "observed'" frequencies,
i.e., those frequencies which are less than zero or greater than n,
is negligible relative to the size a of the significance level being
used for the chi square test, (c) n is so large that if for each cate-
gory the points corresponding to observed frequencies in the binomial
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distribution of observed frequencies were connected by line segments,
the result would have the appearance of a smoothly continuous curve.
The smaller the smallest p;is, the larger n must be to produce the
effects named; and the smaller the significance level chosen for the
chi square test, the greater the relative importance of asymmetry,
the alleged probability of impossible frequencies, and discontinuity,
and therefore the larger n must be to make these effects negligible.
The term ''megligible' has not been, and will not be defined. Any
subjective definition will suffice if consistently applied, since, in the
above discussion, that degree of cause which is defined as negligible
will have an effect whose degree is of about the same order of negli-
gibility.,

Much acrimonious controversy has raged over the question of
how small an expected frequency can be safely used in a chi-square
test. The reason for the animosity is not hard to find. Since for any
expected frequency short of infinity, chi square is an approximation
rather than an exact test, the question of how small an expected fre-
quency can be tolerated resolves itself into a pure matter of opinion
as to how close an approximation is '"good'". And most writers have
not quantified the degree of approximation which they find tolerable
other than by specifying a minimum acceptable expected frequency.

The most popular rule of thumb appears to be that '"no expected fre-
quency should be less than 5", possibly because the normal approxi-
mation to the binomial is regarded as good if np exceeds 5, However,
such rules overlook the fact that the effect of an assumption violation

is usually a function of several factors only one of which, i.e expected
frequency, is mentioned in the rule. For example, there is every rea-
son to believe a priori that (a) the variance and degree of symmetry of
the sampling distribution of observed frequencies, (b) the "height'' of
the significance level chosen, and (c) the number of categories, will be
important factors in determining whether or not the use of an expected
frequency as low as 5 will have an appreciable effect upon the closeness
of approximation of the chi square significance level to the '"true' multi-
nomial significance level. The smaller the variance of the true sampling
distribution of observed frequencies the smaller will be the area of the
normal distribution, assumed for them, which occupies the region cor-
responding to negative, and therefore impossible, frequencies., And
the more nearly symmetrical the sampling distribution of observed fre-
quencies (i, e., the closer p is to .50 for a given n), the better it will
be approximated by the normal distribution it is "assumed' to have.
Curve '"fits'" are usually poorest at their tails, therefore the distortion
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of the chi-square approximation should be greater the higher the sig-
nificance level. Finally, since chi-square is the sum of squared
deviations divided by the respective expected frequencies, the effect
of a single very small expected frequency in a large number of cate-
gories would exert a smaller relative influence upon the sum, and
therefore chi-square, than would be the case if a smaller number of
categories were being used. Tables III and IV show the distorting
effect of some of these factors upon chi square probabilities when the
expected frequency is 5 and 2 respectively. For other studies of the
sensitivity of chi square to gross violations of its assumptions, see

(9, 36, 56, 59, 66),

The prohibition against small expected frequencies has led to
the widely accepted practice of pooling categories in order to bring the
expected frequencies for the combined categories up to the required size.
Such pooling, however, involves an arbitrary decision which must usually
be made subsequent to the collection of data, Such a posteriori mani-
pulation of test parameters, i.e. categories, in effect violates the
assumption of random sampling since outcomes are being influenced by
a factor other than chance., This objection is not an academic one,
since the manner in which categories are combined can dramatically
affect the significance levels obtained for a given set of data. ¥ Gambel
(29) gives an example of a goodness of fit test in which probability
levels calculated by chi-square from the same data, using the same ab-
scissa interval length to define categories (and of course the same num-
ber of categories in each case), vary by a factor of 30 depending on the
point chosen for the beginning of the first interval. When dealing with
contingency tables the expected frequencies are usually not known in
advance of sampling, being calculated from the marginal observed fre-
quencies, In such cases the experimenter may be forced to choose
between a posteriori pooling and using too small an expected frequency,
assumptions being violated under either alternative. However, in test-
ing goodness of fit to a completely known and tabled continuous function
the issue can be avoided because sufficient information is available to
set, in advance, the minimum expected frequency which the experimenter
is willing to tolerate. The ""X-axis'' of the distribution to which fit is
being tested is divided into k intervals so that the area under the curve
above each interval is the same for every interval, each such area there-
fore equaling 1/k. Each interval therefore is a category whose prob-
ability is 1/k, and if n observations are taken, the expected frequency
for each category is n/k. (See 42 and 63)
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The last of the three approximations used in the derivation
of the chi square density function consisted of replacing a discrete
sum by an integral. The result is that the tabled chi square distri-
bution is continuous while the multinomial distribution which it ap-
proximates is discretely distributed as is the '"'"working formula'',

A (fo B fe)
X =Z s e which '"'chi square' is calculated from
e

obtained data. Substituting an integral for a discrete summation is
conscionable only when the discrete function involves so many discrete
values, each differing so slightly from the adjacent values, as to be
well approximated by a continuous function, When expected frequen-
cies are small, the number of different values which the observed fre-
quencies can assume is quite limited, and this discrete distribution

is not well approximated by the continuous chi-square distribution.
However, when chi square is based upon a single degree of freedom,
the approximation can generally be improved by applying Yates' cor-
rection for continuity (66)., This consists of reducing the absolute
value of the deviations of observed from expected frequencies by 1/2
prior to squaring them in the calculation of chi square. The correc-
tion does not compensate exactly for the discontinuity in the sampling
distribution from which the obtained data were '"drawn''; it may, in fact,
aggravate rather than reduce the error. 'In symmetrical and nearly
symmetrical distributions' ... the correction overestimates the true,..
''probabilities at both tails and under-estimates them near the centre

of the distribution, Such discrepancies, however, are small compared
with those arising in violently unsymmetrical cases,'" (66) Generally
Yates' correction is an improvement., It is commonly recommended
for calculating chi squares based on one degree of freedom, (except
when /fO A fe/f 1/2, in which case it "overcorrects'). It should not
be used, however, in calculating individual chi squares, with one de-
gree of freedom, which are to be added, and their degrees of freedom
summed, to obtain a total chi-square. (See Chapter IV for a superior
method in the case of certain fourfold contingency tables. )

Since the multinomial distribution from which chi-square is
derived applies only to repeated independent events the chi-square test
is equally dependent upon the assumption that each of the occurrences
of an event comprising a frequency of occurrence is independent of all
other occurrences of the event. This is one of the most frequently
violated assumptions of chi square (40). Also traceable to the multi-

nomaial is the assumption that outcome categories are mutually exclu-
sive,
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If P; is the probability that a single event will have an outcome

which places it in the ith category, then the expected frequency, fe-,

! i
for that category is np., where n is the number of times the event

. £ : .
is permitted to occur. Since p;= ei/n and since Zpi= 1, it follows

that Zf =n. Obviously if fo is the observed frequency for category i,
e. . 5
1 1
then Zf =n, or Zf = Efe . This is frequently stated as an assump-
0. 0. !
b 1 1
tion: the sum of the observed frequencies must equal the sum of thre
expected frequencies. It is probably most frequently violated by fail- '
ing to give the f the exact decimal values calculated for them, rounding
e
1
them off instead to whole numbers.

Another assumption is that the introduction of informatio‘n
concerning higher moments, such as the variance of the distribut19n
in a test of fit, does not alter the condition expressed by the equality
Z(fo -npi)=0. This is expressed in the requirement that necessary

i
equations involving the above equality are linear and homogeneous in
the variables (fo -npi). (27)
it

When usetul information can be introduced into the chi-square
test, such as the variance of a distribution whose '""goodness of fit'' is
being tested, the effect is to identify and specify the particular values
which the chi variate may assume in one of the dimensions of the hyper-
space which the chi distribution occupie:. The effect of cach such
''restriction' is to reduce by one the number of dimensio~s in which
chi is "free'' to vary, The number of such free dimensions is known
as the number of degrees of freedom. Fisher (23) presents the
rationale for this reduction as follows. '"The common sense of this
correction lies in the fact that when the population with which the
sample is compared has been artificially identified with the sample
in certain respects, such as marginal frequencies, or the moments,
we shall evidently make an exaggerated estimate of the closeness of
agreement between sample and population, if we regard the sample
as an unselected sample of a population known a priori, '

Chi square, although deceptively simple in application, is
one of the most complicated statistics in its theoretical basis, It
has been widely misunderstood by professional statisticians as well
as by laymen. Nearly a quarter of a century elapsed after Pearson's
publication of the original article on chi square before statisticians
understood how degrees of freedom are affected by linear restrictions
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upon the data, And in a survey (40) of the use of chi square by psy-
chologists publishing in a professional journal, in nine out of fourteen
articles the application of chi square was found to be ''clearly unwar-
ranted'. As a symptom of the confusion surrounding its use, extended
discussion and debate has surrounded such questions as the correct
number of degrees of freedom (8, 20, 22, 23, 24, 39, 40, 48, 67)

the minimum tolerable expected frequency (8, 19, 39, 40) when and
how to apply Yates' correction (1, 8, 11, 40, 66), and even whether
or not the hypothesis of "fit" should be rejected when the fit is so good
as to be expected rarely (2, 6, 8, 58). (Curiously enough the affirm-
ative in the last named controversy was taken by no less a statistician
than R, A, Fisher; it is effectively and eloquently rebutted by Stuart
(58) ).

Aside from its complexity chi-square suffers from a number
of practical and theoretical shortcomings, Whether or not an hypo-
thesis of fit will be rejected may depend as much upon the statistician
as upon the obtained data, since probabilities may be greatly affected,

a posteriori, by the manner in which the data are grouped into '"intervals"
or cells. Since all deviations are squared in the computation of chi-
square, the test is completely insensitive to the directions of the devia-
tions, regarding a series of unidirectional deviations as no more sig-
nificant than a set of deviations, varying haphazardly in direction from
the hypothesized curve but having the same absolute magnitudes. Appli-
cations of chi-square in which, for a given sample size, all expected
frequencies can be specified in advance of sampling are relatively rare.
However, it is only in such cases that the chi-square test is truly para-
meter-free., In all other cases chi square is parametric in the sense
that population parameters, e.g., expected frequencies in a contingency
table or the variance of a '"fitted' distribution, must be estimated a
posteriori from sample data. And in such applications the excellence
of the test, i.e., the accuracy of its calculated probabilities, depends
upon the efficiency of the estimates and upon their accuracy in the
particular case in question., In the sense that chi-square assumes

the sampling distribution of observed frequencies in each category to

be normally distributed, it is not ''distribution-free'. More accurately
phrased, chi square falsely assumes a multivariate normal distribu-
tion in cases where the true distribution must necessarily be the mul-
tinomial, Because of its resort to such approximations, it is an in-
exact test.

Because of its many shortcomings, other tests, such as the
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Kolmogorov-Smirnov test of fit will, in most cases, be preferable.
In some few cases chi square may be desirable because of its addi-
tive property or because of its ability to make allowance for the
identification of parameters in the hypothesized population on the
basis of data whose fit is being tested.  However, unless such unique
properties are required, it will be wise to seek another test; and,
when its avoidance is impossible, chi square should be used with
great caution,

SUMMARY

The multinomial test assumes random sampling of events whose
outcomes are independent and fall into mutually exclusive categories,
the sum of whose probabilities is unity., The test yields probabilities
which, for a given set of data, vary with the system of categorization
used. The practical validity of the test therefore depends upon de-
fining and establishing categories which correspond precisely with
the situation to which the experimenter wishes to extend statistical
inference. Although it is an exact test, it may require prohibitively
extensive computation, especially when n is large, since tables are
not available for the case of more than two categories.

The chi square test is extensively tabled and was designed for
those situations in which the multinomial test would be appropriate
if computation of probabilities were easier. The chi square distri-
bution was, in fact, derived from the multinomial distribution, the
derivation having entailed three asymptotically valid approximations.
2 (fo } fe)
It is the asymptotic distribution for the statistic X = Z "

£
e

which, at finite sample sizes is an inexact statistic.

Because of its relationship to the multinomial, the chi square
test incorporates all of the assumptions on which the multinomial is
based. It therefore assumes that events are randomly sampled,
that possible outcomes, i.e. categories, are mutually exclusive,
that actual outcomes are independent, that Zpiz 1 and Zfo= Zfe.
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Further assumptions are required due to steps taken in the
derivation of chi square. Within each multinomial category the
frequency of occurrence is binomially distributed with mean equal
to np. However, the derivation regards this frequency as normally
distributed. The chi square test therefore makes the assumption
that within each chi square 'cell the population of "observed' fre-
quencies is normally distributed about the expected frequency, np,
as a mean, This is equivalent to assuming infinite n, since it is
only for that case that the binomial can be exactly fitted by a normal
distribution, and since f, = np, it is equivalent to assuming infinite
expected frequencies., Another assumption, traceable to the deri-
vation is that all restrictions on the data are both linear and homo-
geneous,

Chi square will not be a good approximate test unless the binomaial
distribution of observed frequencies within each category is well ap-
proximated by a normal distribution., The normal approximation
worsens with increasingly remote tail positions, with increasing
asymmetry of the binomial and with decreasing sample size. There-
fore the accuracy of the chi square test is a function of a, the sig-
nificance level, p;, the probability that a single event will have an out-
come in the ith category, and n, the total number of events, The
rule that no expected frequency, f_ = np, should be less than 5 is
a poor one since the accuracy of the chi square test varies widely
with the individual values of n and p as well as with their product
and since the rule says nothing abouta.

The tabled chi square distribution isza continuous one, The
2 (fo B fe)
distribution of the value, X =X ! by which '"chi
fe

square' is calculated from obtained data, must, however, have a
discrete distribution since observed frequencies are necessarily in-
tegers. This introduces an error which can usually be reduced,
but is not entirely removed, by applying Yates! correction for con-
tinuity when chi square is based upon a single degree of freedom.
It should not be applied, however, if the individual chi squares are
to be added to obtain a total chi square.

If "natural' categories are combined or '‘pooled" in order to
increase the size of expected frequencies or in order to shorten
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computations, the redefinition of categories changes the situation to
which "fit'" is being tested. It therefore alters the null hypothesis
in a way which is fairly obvious in the case of contingency tables,
more subtle in the case of tests for goodness of fit (where the null
hypothesis actually being tested is that the various categories have
the expected frequencies assigned to them, not that the two 'curves"
are identical). This combining of categories may obscure a real
effect and lead to "acceptance' when the uncombined data actually
call for '"rejection' of the hypothesis in which the experimenter ac-
tually is interested, or it may do the opposite. Furthermore, in
tests of goodness of fit to a continuous distribution, not only will the
choice of interval length affect the obtained significance level, but
even the choice of the point at which to begin the leftmost or right-
most abscissa interval may have a profound effect upon the signifi-
cance level obtained. 1In fact profound effects may attend any situa-
tion in which categories are determined on the basis of a posteriori
expediency rather than by a 'matural' discrimination between pre-
cisely those event outcomes in which the experimenter is interested.

Although chi square is extremely complicated in its derivation,
its simplicity of actual computational application has made it a
favorite among the statistically naive., This treacherous combina-
tion of theoretical complexity and deceptive simplicity in practical
application has made it a perennially misused statistic, Even
mathematical statisticians, including those originating it and modi-
fying it, have experienced great difficulty in determining its proper
use and even greater lack of success in explaining it to lay statis-
ticians, Therefore research workers will be well advised to check
thoroughly into the theoretical admissibility of any contemplated
application of this statistic. Those not possessing the requisite
sophistication for such an undertaking are urged to shun chi square,
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CHAPTER IV

EXACT TREATMENT OF FREQUENCY DATA IN FOURFOLD TABLES

A test statistic having a "binomial'" derivation (but not a binomial
distribution) can be used to test whether or not two samples dichoto-
mized into A's and B's came from populations with equal A/B ratios.
Tests of this type use only frequency data and are easy to apply. De-
pending upon the choice of dichotomous categories, the method may
be used to test for equal A/B ratios, or may be used to test for loca-
tion, dispersion, correlation, or trend. The method can be regarded
as an application of Fisher's Method of Randomization (See next
chapter) to observation frequencies rather than their magnitudes;
and, in this context, it is of historical importance in the development
of distribution-free methods.
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1., Fisher'!s Exact Method

a. Rationale. Suppose that two populations, differing perhaps
in many ways, nevertheless each consist entirely of units which belong
to one or the other of two mutually exclusive categories, A and B,
Suppose further that a sample has been drawn from each population and
the experimenter wishes to test the hypothesis that the proportion of
A's in Population I is the same as that in Population II. Letting the
frequency data be represented by the table shown below,

Category
A B Total
SampleI [ |b m
Sample II |[c |d n
Total r|s N

if the hypothesis is true one would expect cell frequency a to be such
that, on the average, the proportion, a/m of A's in Sample I would equal
the proportion, c/n, of A's in Sample 1I. Therefore one might reason-
ably reject the null hypothesis of equal proportions of A's, at the a

level of significance, if the obtained cell frequency a is among that pro-
portion, a, of possible values of a which cause a/m to differ from c/n
by the greatest amount,

If the validity of the hypothesis be accepted, it follows that the
true proportion of A's among the A's and B's in Population I, in Popu-
lation II and in both populations combined, is the same. Let p be this
common, but unknown, proportion., If the null hypothesis is true, then,
the probability of the obtained cell frequencies, within that set of events
in which m units have been drawn from Population I and n units from
Population II, is the product of two binomial probabilities, being

d s s
(r:) pa (1_p)b (2) pc (1-p) or (r:) (2) pr (1-p) . The probability that

of the N units in samples I and II combined, r will fall in category A
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and s in category B is (lj) pr (l—p)S . Therefore the probability of

the obtained cell frequencies within that set of N events in which m
and n units are drawn from the respective populations, I and II, and
r and s units fall into the respective column categories, A and B,

(D (e (1-p)°

is . Since the unknown proportion, p, cancels
N, r s
(L) p (1-p)

out, the probability of exactly the obtained cell frequencies with com-
pletely specified marginal frequencies m, n, r and s as shown is

mi n! r} s!

N! al! b! ¢! dl

Since marginal frequencies are constants, this probability
can be expressed in terms of a single cell frequency, becoming

. This is the probability for exactly
N! a! (m-a)! (r-a)! (n-r+a)!l

the set of cell frequencies obtained, i.e., it is a point probability.
The probability required, however, is the cumulative probability for
those sets of cell frequencies which cause the greatest difference
between the proportions a/m and c¢/n. Therefore the probability

m! n! r! s!
St -8 must be cumulated over those values

N! a! (m-a)! (r-a)! (n-r+a)i

of a causing differences betweenthe proportions a/m and c/n as
great as or greater than that existing in the obtained table. If
this cumulated probability is less than, a, the significance level
chosen, the null hypothesis is rejected.

b. Null Hypothesis, The proportion of A's in Population I
is the same as the proportion of A's in Population II,

c. Assumptions., (1) Sampling is random, (2) the N units
are independent, i.e., to what categories a unit will belong is unin-
fluenced by the categories to which any other unit belongs (This
assumption applies to the generation of the ''table' and its marginal
frequencies, and therefore is not in conflict with the fact that the
table is completely specified by its marginal frequencies and a single
cell frequency.), (3) the two row categories are mutually exclusive
as are the two column categories, (4) the "A or B" dichotomy repre-
sents all possible '"column' outcomes and the "I or II'" dichotomy,
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all "row'" outcomes (or, alternatively, sampling and statistical in-
ference are restricted to that set of units capable of being dichoto-
mized A or B in regard to one measured characteristic and I or II

in regard to another). These assumptions are directly related

to the assumptions of the binomials used in the derivation of the

test. The assumption of independence is also occasioned by the

fact that the probability for the obtained table was obtained by tak-

ing the product of the separate probabilities for the results in eachrow.

d. Efficiency and Power. In a sense the test is perfectly
""efficient'' since it is an exact method which uses all of the "infor-
mation' in the sample; parametric tests for the same problem
merely substitute the normal approximation for the true binomial
distribution of frequencies within a cell and therefore use the same
"information'' but use it somewhat inaccurately, In the practical,
computational sense, the test is inefficient for moderate and large
samples if computation must be carried out without the aid of tables.
Such tables do, however, exist for small and moderate size samples
so the test may be regarded as practically inefficient only for appli-
cation to large samples,

e. Application, To illustrate the application of this test,
suppose that an experimenter has obtained the frequency data shown
in the table below and wishes to test whether the true survival rate
of persons afflicted by a rare disease is the same for men as for
women,

Survived Died

Men 4 10 14
Women 9 1 10
13 11 24

The proportion of men surviving is 4/14 or .2857 while that for
women is 9/10 or .90, and the difference between the two obtained
proportions is ., 6143, Tables, with the same marginal totals, in
which the difference between the proportions surviving is as great
or greater than , 6143 are shown below,
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The values of a which cause the sex difference in the proportion sur-
viving to be as great or greater than that in the obtained table are 3,
4, 12 and 13, Therefore the chance probability for results as ex-
treme as those obtained, if there actually is no sex-fatality rate inter-

m! n! r! s!

. . E
action 1s N! a' (m-a)' (r-a)' (n-r+a)’

with the summation being

taken over the values a = 3, 4, 12 and 13 for a two tailed test. This
probability is .00226. For the one-sided hypothesis that the survival
rate for men is either greater than or equal to that for women, the
summation is taken over a = 3 and a = 4 which gives a probability of

. 00208, i.e., which is '"'significant' at the .00208 level for a one-
tailed test. For the opposite hypothesis that the survival rate for
men is either less than or equal to that for women, the summation
would be taken over the values a =13, 12, 11, 10, etc., until the
cumulative probability, on the next addition, would have exceeded
the one-tailed significance level. Obviously for ordinary signifi-
cance levels, this point would be reached before the probability for

a =4 was required in the summation, and since the critical region
did not include the actually obtained value, a = 4, the hypothesis
could not be rejected.

f. Discussion. The propriety of Fisher's Exact Method has
been the subject of animated controversy among distinguished statisti-
cians (2, 5, 14, 17, 29, 30, 38, 45). Some have objected that a test
which necessarily takes marginal totals as fixed is therefore a ''condi-
tional' test and cannot properly be used as a basis for statistical in-
ference to a larger, unrestricted population. The principle against
which these objections were raised has subsequently become the basis
of a number of distribution-free tests. It is that if two samples of
sizes m and n have been drawn from identical populations, they may
be regarded as a single random sample of size m+n from the common
population. The two original samples may therefore be regarded as
having been obtained by randomly assigning the label, '"SampleI' to
m of the m+n units in the ""combined' sample, the n remaining units
being labeled '""Sample II''. The degree to which Samples I and 1I
differ, in any specified measure, not directly related to size, is
therefore a matter of chance. The chance probability of the observed

difference can therefore be obtained by forming all of the (m+n)

n
different possible ''splits'" of the common sample of m+n units into
two samples of sizes m and n and by determining in what propor -
tion of them the specified measure differs by an amount as great or
greater than that actually obtained.
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Applying this approach to the fourfold table, the marginal
totals r and s may be regarded as the '"parent' sample. There
are (rr;s) or (rl\:l) ways of splitting this sample into two samples of
m and n units. The frequencies a and c can only be obtained
from r and there are (:) ways in which precisely these frequencies
can be obtained for Samples I and II respectively. For each such
way, there are (;) ways of obtaining the frequencies b and d., Thus

the point probability of the obtained table, given its marginal totals,

() )
1 1 1 1
is aN L or N'rna.'nl;' rc.' sé, , and the cumulative probability
( ) L] * L) L ] L)
m

is obtained by summing the point probabilities for the appropriate
values of a.

A number of different kinds of data can logically be cast into
a fourfold table and a variety of hypotheses concerning the data are
possible. Furthermore, the validity of a given hypothesis can be
tested by a number of methods, although perhaps varying considerably
in efficiency and logical appeal. These points have been made by
critics of the method (2, 5, 19, 29). However, the Exact Method
appears to be impeccable when used to test the null hypothesis that
the unknown proportion of A's in two independent populations, capable
of being dichotomized into mutually exclusive categories, A and B,
is the same, and when the sample sizes m and n are determined in
advance of sampling.

Unless samples are of equal size, the probability of a will
not be the same as the probability of the "opposite deviation', m-a,
in the upper left cell. Therefore, although when m=n two tailed
probabilities can be obtained by doubling

m! n! r! s!

! x! (m-x)! (r-x)! (n-r+x)!

m ] 1 t t 0 o
Xga s D Lo Ss , Wwhichever is smaller, when

N! x! (m-x)! (r-x)! (n-r+x)!
samples are of unequal size the summation must be taken over those
extreme values of a which cause the absolute difference Ia/m - c/nl
to be as great or greater than is the case in the actually obtained

table. Furthermore, since a is an integer its probability is dis-
cretely distributed and there is not likely to be correspondence
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between integral values of a and the standard significance levels, ‘
.05, .01, and .001. If the experimenter has some compelling

reason for wishing to use these standard significance levels he

may employ Tocher's (38) modification: If the obtained cumulative

probability is less than the standard significance level, a, results

are considered significant at the level a. If the obtained cumula-

tive probability exceeds a but would be less than a if cumulated

for a value of a one unit more extreme, ("'more extreme" values

being understood to be those causing a larger absolute difference

|a/m - c/nl ), Tocher computes the ratio

- 1
g F (Eomei endiveniie A 5) . He then enters a table of

Pr (observed a or more extreme a's)

random numbers running from 0 to 1 and randomly selects a number.
If the number selected is smaller than the above ratio, results are
considered to have fallen within the a level of significance and the
null hypothesis is rejected.

g. Tables, A number of tables (12, 13, 20, 21, 22, 23,
24, 42) have been prepared expressly for use with Fisher's Exact
Method. Some have used Fisher's Exact Method to calculate prob-
abilities when N is small, but have resorted to chi square with Yates'
correction when N exceeds a certain value., In some of the tables
it is suggested that two-tailed probabilities can be obtained by doubling
the one-tailed probability listed in the table. This, of course, is .
strictly legitimate only if the distribution of the test statistic is sym-
metrical which, in fact, is the case only when the two samples are
of equal size.

When N is small or when the significance level is extreme,
probabilities may be obtained by a method described by Mosteller

[ p™ (-p) 2T (1-p) ]
[ p™ (1-p)" 7]

Each of the bracketed expressions is a binomial probability, and

since the terms involving p cancel out, p may be arbitrarily assigned
any constant value and the bracketed probabilities can then be ob-
tained from tables of the point binomial. Thus the point probabilities

of the most extreme values of a can be calculated and then cumulated.

(II-34). The point probability of a is

h. Sourees. 2; 5 9 12; 13; 14; 15, 17, 18, 20, 21, 22;23;
24, 29, 38, 42, 44, 45, 46, 47. See also: 1, 3, 6, 16, 19, 28&, 30,
31, 32, 33, 34, 36, 39, 48.
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2 Westenberg's Median Test

a. Rationale, Let two samples of measurements be taken,
one from Pupulation I, the other from Population II and let M be the
median measurement of the pooled samples., If a and c are the
respective numbers of measurements in Samples I and II which ex-
ceed M and if b and d are the corresponding numbers of measure-
ments which are less than M, the data can be arranged in a fourfold
table as follows and Fisher's Exact Method can be used to determine
the probability that the proportion of measurements in Population I
which exceed M is the same as the proportion of measurements
greater than M in Population II.

Above M Below M

Sample I | a b m
Sample II G d n
N/2 N/2 N

If the pooled sample median M be regarded as an estimate of the
pooled population median, the test can be used to test the hypothesis
that Populations I and II have identical medians. Otherwise it simply
tests whether the value M splits Populations I and II into the same,
but unknown, proportions,

b. Null Hypothesis, The proportion of measurements which
lie above the median ot Samples I and II combined is the same for
Population I as for Population II.

A sufficient, but not a necessary, condition for the validity
of the null hypothesis is that Populations I and II be identical, There-
fore rejection of the null hypothesis is equivalent to rejection of the
hypothesis of identical populations, but failure to reject the null hy-
pothesis is not equivalent to failure to reject the hypothesis of iden-
tical populations.

c. Assumptions. As does Fisher's Exact Method, the test
assumes random sampling, dichotomized and mutually exclusive
categories for both rows and columns, and assumes that, in the pro-
ce_ségmmpling, each measurement value is independent of the
value of every other measure (even though measurements are not
independent in their a posteriori categorization). The median test
assumes further that both populations are continuously distributed
so that no measurements will be tied with M.
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d. Treatment of Ties, Tied scores are a problem only when
tied with M, If such ties constitute only a small proportion of N,
half of the scores in each sample which are tied with M may be cate-
gorized as "above M', half as '""below M'", If, in a given sample
there are an odd number of such ties, the odd tie may be discarded
and the sample size reduced by one, or the odd tie may be categorized
in whichever way will be least conducive to rejection of the null hypo-
thesis. For a more conservative test, all scores tied with M may
be categorized in the manner least conducive to rejection,

e. Efficiency, The asymptotic efficiency of the median test
for location relative to Student's t-test, when both tests are applied
to normal populations with equal variances, was found by Mood (V-
37) to be 2/7 or .637. Mood qualified his findings as resting upon
certain unproved assumptions. Dixon (XI-13) found the power effic-
iency of the test, when sample sizes are very small, to be inferior
to that of the Wilcoxon test and to that of the Maximum Absolute Dev-
iation test when all three tests were applied to test the difference in
means of two samples drawn from normal populations with equal
variances, Lehmann (I-31) examined the relative power of six non-
parametric tests when based on two small samples of equal size from
two quite different continuous distributions., Ranked in order of de-
creasing power the tests were: Lehmann's '""Most Powerful' test for
the specific situation tested (one-tailed test), the Mann-Whitney test
(one-tailed), Westenberg's Median test (one-tailed), the Mann-Whitney
test (two-tailed), Westenberg's Median test (two-tailed), and finally
the Wald-Wolfowitz Total Number of Runs test. Roughly, the median
test was about 75% as powerful as the Mann-Whitney test, Apparently
on the basis of these and his own results, Van der Waerden (I-52)
concludes that the median test generally is less poWerful than his X
test,

f. Application, Fix sample size in advance and draw a sample
from each of the two populations, Find the median, M, of the two
samples when pooled, then determine the number of scores, a, in
Sample I which are above, and the number, b, which are below M,
counting half of the scores tied with M as '"above'', half as ""below!'",
and discarding any odd tie. Find the corresponding numbers, c,
and, d, for Sample II, then construct the frequency table shown in
"Rationale' with m = at+b, n= c+d and N= m+n, Under this proce-
dure, the frequency data entered in the fourfold table does not include
the median score M, and the cell and marginal frequencies do not re-
present any discarded odd ties. From this point on, application is the
same as for Fisher's Exact Method,
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g. Discussion., The hypothesis actually tested is that equal
proportions of Populations I and II lie above, and equal proportions
lie below, the pooled sample median. If the pooled sample median,
M, were the same value as the median of the pooled populations, the
test would test whether or not Populations I and II had identical medi-
ans. However, this is almost certain not to be the case. When N
is small the pooled sample median and the pooled population median
may differ quite appreciably; for large values of N, however, the
difference can be expected to be relatively small, Phrased differ-
ently, the median test tests whether or not the value, M, represents
the same, but unknown, quantile in the two populations, If the null
hypothesis is true and N is large this unknown quantile will be a pro-
portion very close to .5 and the score M will be very nearly the com=-
mon median of the two populations., The median test can, in this case,
be regarded in an approximate sense as a test for identical population
medians. However, when N is small, the validity of the null hypothesis
does not insure that the unknown quantile represented by M will be in
the neighborhood of ,5, and the test can only be considered as testing
whether the distributions of the two populations, when cumulated up
to the point M, contain equal areas. If the two populations are iden-
tical this will be the case, so the small-sample median test can be
used to test the hypothesis of identical population distributions,

(See '""Null Hypothesis'),

If N is an odd number, the pooled sample median has the same
value as one of the obtained scores. Since this score is neither above
nor below M, it represents a third '"binomial'' outcome and violates one
of the assumptions on which the test is based. (If N is large the conse-
quence of this violation will be slight.) If N is even, this problem does
not arise. However, in this case, M does not have a specific value, but

rather can be defined only as lying somewhere between the gth and the

—1\21-+1th ranked scores. Thus the null hypothesis, that equal proportions
of the two populations lie above M, becomes equally vague. Summarizing,
then, the median test is an approximate test for identical but unknown
quantiles, As sample size increases, it becomes more nearly exact and
the unknown quantile approaches .50 so that it tends to become a test for
egual population medians.

h. Tables. All tables for Fisher's Exact Method are appro-
priate. (See 1. Fisher's Exact Method, g). Tables especially designed
for median test have been published by Westenberg (40, 41, 43).
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i, Sources., 26, 40, 41, 43,

3. The Median Test for Linear Trend

Cox and Stuart (11) have pointed out that if Sample I is taken
to be the first half, and Sample II the second half, of a series of ob-
servations taken sequentially, the median test can be used to test for
linear trend. If as time passes the population distribution, without
changing in shape, simply '"slides' upward or slides downward uni-
directionally on the ''x-axis'", then the proportion of values above M
in Population I will not be the same as the corresponding proportion
in Population II, (Here Population I is the temporally changing pop-
ulation considered as existing from the beginning of sampling until
half of the observations have been taken, Population II being similarly
defined for the remaining interval.) And this statement will be
equally valid whatever quantile M represents when the null hypothesis
is true., Therefore, if it can be legitimately assumed that the sam-
pled population may change in the location but not in the shape of its
distribution, the test will be sensitive to '"'slippage'' of any location
parameter, and the question of how closely M represents the common
population median will not be a problem.

Generally, however, a change in location is accompanied by
a change in dispersion, and therefore by a change in the form of the
population distribution. Therefore, in the generality of cases the
additional assumption will not be legitimate. In such cases if the
null hypothesis is false, the true, i.e., '"alternative'', hypothesis is
that M is a different quantile in Population II than in Population I,
i, e,, the cumulative distributions of Populations I and II have different
ordinates at the abscissa point M, If the additional assumption can-
not be made, then, the test, in effect, tests for shift in an unknown
quantile which may be near to or far from the population median.

The asmyptotic relative efficiency of the median test for
trend, relative to 'the best (parametric) test against normal re-
gression, based on the sample regression coefficient, b, " is .78
(11, 35), This is the same as the A, R, E, of Cox and Stuart's
S, sign test for trend.
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4., Westenberg's Test for Interquartile Range

Westenberg (43) has proposed a modification of his own
median test in which, instead of dividing each sample into observa-
tions above and observations below the median of the pooled sample,
the samples are divided into observations within and observations out-
side of the interquartile range, Q; to Q_3, of the pooled sample.

Within | Outside
Q; - Q4(Q; - Q,

Sample I a b m
Sample II & d n
Total N/2 N/2 N

Since the expected proportion of observations above a median is the
same as the expected proportion of observations within an interqua rtile
range, the two tests have identical mathematical bases. The perform-
ance of the interquartile range test is therefore analogous to that of the
median test, The null hypothesis is that identical proportions of Popu-
lations I and II lie within the interquartile range of the pooled samples.
The test therefore does nottest whether the two populations have equal
interquartile ranges; it tests whether they have equal areas included
between the values Ql and Q. which were obtained from the samples.
(See '"Discussion' of the rned%ian test.) The efficiency of the test
apparently is unknown, Treatment of ties is analogous to that of

the median test; all ties may be categorized conservatively; or in
each sample, half of the observations tied with either Q, or Q_ be
counted as ''within", half as "outside' and any odd tied observation
discarded.

5. A '"Median' Test for Correlation

a. Rationale., Consider a sample of units or individuals
upon each of which an x measurement and a y measurement have
been made. Let its scattergram be divided into four quadrants by
a horizontal line through the sample's y median and a vertical line
through its x median. Then if the x and y attributes are uncorrel-
ated, one would expect each of the four quadrants to contain about the
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same number of units; while, if a correlation exists, a preponderance
of units should be located in one of the two pairs of diagonal quadrants,

If the x and y attributes are uncorrelated, dividing the ori-
ginal sample into two equal sized samples on the basis of some char-
acteristic of x will divide the y's into two "y-samples' which differ
on the basis of chance alone. They are therefore two samples from
the same population of y's, and in each sample the proportion of y's
having any specified y characteristic should also differ on the basis
of chance alone, On the other hand if x and y are correlated in
respect to the criteria used to subdivide the sample, the two y-
samples will, in a sense, be from different populations which contain
different proportions of y's with the relevant , specified character-
istic,

This treatment of correlation reduces therefore to Fisher's
Exact Method with categories as shown below:

A: B:
Above Below
Sample Sample
ymedian ymedian Total

Samplel: y's whose pairedxis above sample x median a b m
Sample II: y's whose pairedxis below sample x median C d n
Total r s N

The categorizations and designation of table frequencies can be simpli-
fied to the following, "units! being the item tabled, a unit's x measure
being referred to in the rows, its y measure in the columns,

Above Below
y median y median Total

Above x median a N._ 2 " N/2
2
Below x median N -a a N/2
2
Total N/2 N/2 N
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The point probability for the tabled frequencies, if the null hypothesis
of no correlation is true, is therefore

/2t
N (a)® [ -a) ]

b, Null Hypothesis, In the parent population, those units
whose x value exceeds the sample x~-median have the same propor-
tion of y's above the sample y-median as have those units whose x
value is less than the sample x-median., A sufficient condition for
its validity is that the x and y attributes are uncorrelated.

c. Assumptions., Same as for Westenberg's median test;

see 2,

d, Treatment of Ties, Tied scores are a problem only when
tied with one or both of the sample medians, For a conservative test
all such ties may be categorized in the manner least conducive to re-
jection of the null hypothesis, Alternatively, to minimize tie error,
half of the scattergram units lying on the line separating two qua-
drants may be counted as belonging to each quadrant. If there are
an odd number of such units, the odd unit should be held for discard-
ing. Units lying on the intersection of the two median lines should
be discarded. Before discarding, a certain number of 'units' may
be salvaged. For example, if one unit has its x value tied with
the x median and another unit has its y value tied with the y median,
two new '"units' may be formed from the old ones, one of which has
nontied x and y values, the other having both x and y values tied
with their medians., Only the latter new unit need be discarded,
the former being '"'returned' to the sample. The value N should
refer to the number of units remaining in the sample after all dis-
carding has been completed. When ties are treated in this manner,
marginal frequencies need not all equal N/2 so the formula

m! n! r! s!

ST oo from Fisher's Exact Method should be used to cal-
¢ ar bl el d.

culate probabilities.,

e. Efficiency. Applied to populations known to have normally
distributed x's and normally distributed y!s, the test has an asymptotic
local efficiency of (2/71')2 or .4l relative to the correlation coefficient
p . Under the same circumstances its asymptotic efficiency relative
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to Kendall's rank order correlation coefficient, T, is 4/9. (4)

f. Application, Find the sample x and y medians, construct
the fourfold table shown in '""Rationale' treating ties as outlined under
(d), and apply Fisher's Exact Method,

g. Discussion. If no correlation exists, then, on the average,
half of the sample units should fall in the '"North-West' and '"South-
East'' quadrants and half in the opposite diagonal pair, It might be
supposed, therefore, that the number of units, r, in one of the pairs
of diagonal quadrants would be binomially distributed with p = , 50

- when the null hypothesis is true, so that (I;I) (. 50)N would be the

point probability of the obtained results., Such a supposition would be
in error. The binomial test would require that the categorization of
each unit to one of the diagonal pairs of quadrants be independent of
the categorization of every other unit. However, it is in the nature
of the construction of the table that equal numbers of units must "fall"
in diagonally opposite quadrants, Thus, for each unit falling in a
given quadrant, another unit must fall in the diagonally opposite quad-
rant and therefore must receive the same binomial categorization
given the first unit, For example, if N = 4, there are three possible

tables: 0 | 2 s 1 | 1 , and 210 . There are 6 permutations of the
2o 111 o] 2

N units which will give the first table, 24 which will yield the second,

and 6 which result in the third, Thus the respective probabilities of the

three tables are 6/36, 24/36 and 6/36 or 1/6, 4/6 and 1/6, These are

[(v/2): 1%
N! (al)°[ (5 - ap]”

also the probabilities obtained by using the formula

If the binomial test is applied to the three tables, the respective probabil-
ities are calculated to be 1/16, 6/16, and 1/16. Not only are these ''prob-
abilities'" different, but their sum is 1/2 rather than 1, clearly indicating
that the test is fundamentally in error, The sum of the "probabilities"
is 1/2 rather than 1 because the number of units in a pair of diagonally
opposite quadrants can only be an even number, while a truly binomial
variate can assume any integral value between zero and N, Nor would
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it be correct to confine the binomial test to, say, the upper two quad-
rants, calculating the probability that, of the N/2 units in the upper
two quadrants a of them would fall in the left quadrant. In the
upper half of the tables just discussed, the number of permutations

of the N/2 units which will give the three results shown are 1, 2,

and 1. The probabilities for the upper halves of the three tables,
considered separately and as if independent of the lower halves,

are therefore 1/4, 2/4, and 1/4, which are also those obtained by
using the binomial formula., Thus the table, taken as a whole, has

a different probability than its upper half alone. Clearly, then the
dependence between units in diagonally opposite quadrants is

a partial dependence which can neither be ignored, by applying a bi-
nomial test to the number of units in a diagonal pair of quadrants, nor
be treated as a complete dependence by confining the binomial test to
the upper half of the table. The error shown to exist in the binomial
approach is not confined to very small sample sizes. For example,

the table g g has the "probabilities", 1/12,870, 1/65,536, and

1/256 respectively when tested by Fisher's Exact Method, by the
binomial test applied to the entire table, and by the binomial test
applied only to the upper half of the table.

If the sample is divided into quadrants by its x and y means,
rather than medians, the '"binomial' approach is still unconscionable.
If median and mean are identical all of the objections discussed above
apply. If they differ, the premise that half of the sample units would
be expected to lie in a pair of diagonally opposite quadrants is false,
and the binomial parameter, p, does not have the value, .50, substi-
tuted in the formula used to calculate probabilities,

h, Tables. Tables for Fisher's Exact Method are appro-
priate. See 1.

i. Sources, 4, 8, 10,

6. Test for a Difference between Correlated Proportions

a. Rationale. If each of N units or individuals have been cate-
gorized as belonging to one or the other of two mutually exclusive cate-
gories I and II, and the same N units have been categorized according

95




to another mutually exclusive dichotomy A and B, the experimenter
may wish to know whether or not in the parent population the pro-
portion of I's differs from the Proportion of Als, Let the frequency
data be represented by the accompanying table.

A B
I a b m
II c d n
r s N

Letting primes indicate population values corresponding to sample

H H
frequencies, the proportion of I's is m?/N!' or _a.__-_F_'l_)__ and the pro-

portion of A's is r'/N!? or_ai-i-_c_’ . These two proportions are equal
only if b! = ¢!, Therefore, N{he hypothesis of equal proportions can be
tested by examining the probability of obtaining the sample b and c by
random sampling of b+c units from an infinite population consisting of
equal numbers of b'’ s and ¢!’ s, Thus the point probability for the ob-

b+c

tained b and c is given by the binomial ( b ) (.5)b+c.

b. Null Hypothesis. In an infinite population of units each of
which is classed as either I or II and as either A or B, the proportion
of units categorized as I's has the same value as the proportion of units
categorized as A's, If this hypothesis is true, it follows inevitably
that there are exactly as many II A units as I B units in the population
of I A's, II A's, I B's and II B's, and this is the hypothesis actually
tested,

c. Assumptions. Since the test is a binomial one, it depends
upon the usual binomial assumptions: (1) sampling is random, (2) cate-
gorization of one unit does not influence the categorization of any other
unit, i,e., units are independent and are drawn from an infinite popu-
lation of potential units, (3) the population selected for test, i.e., the
units categorized II A or IB, constitutes a dichotormy, (4) the dicho-
tomized categories II A and I B are mutually exclusive, In addition,
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the unique construction of the test necessitates the following assump-
tions: (5) the I and II categories are mutually exclusive as are the

A and B categories, thereby making the four categories I A, II A,

I B, and II B mutually exclusive (the latter is required in order that
the '"no trial'' categories, I A and II B, will contain none of the II A

or I B attributes, those actually tested, thus making the exclusion

of I A and II B data legitimate.) (6} every unit categorized either

I or II is also categorized either A or B and vice versa, i.e.,

the "I II'' and ""A B! categorizations are applied to the same data;
unless this is the case, the data cannot legitimately be cast into

a fourfold table, but specifically the proportions of I's and A's can-
a'+b' and a' + e

N' N'

ference between b' and c! is not sufficient to demonstrate a difference
between the two proportions.

not be represented as respectively, and a dif-

d. Efficiency. No information seems to be available; however,
it would appear Iogicag that the test efficiency would be high since the
test appears to make efficient use of all the "information' available.

e. Application, Draw a sample of N units from the population
in question, and let the table shown in '""Rationale' represent the fre-
quency data categorized according to each of the dichotomies I or II
and A or B. Let a represent the level of significance chosen, and
let r represent the smaller of the two frequencies, b and c.

For a two-tailed test of the null hypothesis that in the parent
population the unknown proportion of I's is the same as the correiated,

unknown proportion of A's, reject if 2 f‘.‘,_% (b-ii-c

one-tailed test, reject the hypothesis that the proportion of I's is either
the same or smaller than the proportion of A's if

¢ ,b+c

‘1):';0 ( i )(.5)b+c <a. Or, for the opposite one-tailed test, reject the

1.5°" <0, Fora

hypothesis that the proportion of I's is either the same or greater than

the proportion of A's if Eb RIE

b+c
Zo 1657 <a.

f. Discussion. McNemar (25), whooriginated the test, used
the chi square approximation, rather than the binomial, with

(b - b+c )2 . b+c )2 2
2 _ & 2 Kieh sed 2 _ (b-c)
X = Bic + i which reduces to x = .
—— =
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with one da ree of freedom, The binomial, however, is the exact test
and should be used unless btc is very large, in which case either test
may be used,

Although this test bears a superficial similarity to the bino-
mial test for correlation criticised in the '"Discussion' section of
(5. A "Median'" Test for Correlation), the objections voiced there
do not apply here. In the present test, categories are completely
specified in advance of sampling, the categorization of one unit does
not influence the categorization of any other unit, and the '"popula-
tion'" from which the sample is considered to have been obtained is
the parent population from which the b+c units were drawn. In the
binomial test for correlation, on the other hand, categories were
established after sampling and were a function of the sample results,
and the categorizations of units were not independent., The proper
analysis of such data requires that the test be a ''conditional test in
which the obtained table is regarded as a sample from a population of
tables. Each table in a population of tables with fixed marginal fre-
quencies is a different permutation of the units constituting the cell
frequencies. Therefore, in calculating probabilities for such condi-
tional tests all permutations and therefore all cells must be consid-
ered. Since McNemar's test is not a conditional test, no restrictions
having been placed on marginal frequencies, units may distribute
themselves in the "b'" and ''c' cells strictly according to the binomial
law,

g. Tables, Use tables of the cumulative binomial probability
with p = .5, or tables for the Sign Test. (See Chapter II}). Tables
especially designed for the application of this test employing the chi
square approximation to the binomial have been published by Swine-
ford (37).

h, Sources, 25, 37.
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CHAPTER V
TESTS BASED ON FISHER'S METHOD OF RANDOMIZATION I

The logical basis for most distribution-free tests is rooted in a
method originated by R. A, Fisher and known as the Method of Rando-
mization, The basis of statistical inference is simply this. If sev-
eral samples have been drawn from a common population, they may
be regarded as one large sample whose observations have been ran-
domly assigned to subsamples or component samples of the sizes
actually drawn. Each of the different possible random assignments
was, prior to sampling, equally likely to be the actually obtained
sample, if the null hypothesis of identical populations is true, but
unequally likely to be if the null hypothesis is false. By choosing a
test statistic which is sensitive to the alternative hypothesis and cal-
culating its value for each of the n different possible random assign-
ments, one obtains a set of n equally weighted values of the test
statistic (some of which are the same) which form the distribution
of the test statistic under the null hypothesis, Its rejection region
is simply the N most extreme of these values each of which is exactly
as likely as any other value when the null hypothesis is true, but which
become especially probable when the alternative hypothesis is true.

If the test statistic for the actually obtained sample falls within the

rejection region, the null hypothesis can be rejected at the N/n level
of significance.

The method, as developed by Fisher, has been improved by Wil-
coxon who, by replacing original observation magnitudes by their ranks,
"standardized' the rejection region and permitted tabling of probabili-
ties, Wilcoxon's tests are among the most efficient and most impor-
tant distribution-free tests, The sample information used by Fisher
was the sample mean or mean difference; Wilcoxon used rank sums
or sums of algebraically signed ranks. Both constructed tests sen-
sitive to location.
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1., Fisher's Method of Randomization: Matched Pairs

a. Rationale. Let n matched pairs of observations be taken,
one member of each pair having been taken under treatment A, the
other under treatment B. If each B observation is subtracted from
its paired A observation, there will be n difference scores henceforth
referred to as the obtained sample. If the A and B treatments have
equal effects, in all respects to which the measurements are sensitive,
then the members of any given matched pair of observations may be
regarded as having been drawn from the same population, In this
case 'treatment A'" and 'treatment B'' are merely arbitrary labels
which are applied to two random observations from the same popu-
lation, and a specified one of the two observations is as likely to
acquire the label "A'" as to be labeled "B'. The difference score for
any given pair of observations is therefore as likely to be plus as to
be minus, If the A and B treatments produce effects whose distri-
butions are not identical but which are symmetrical about the same
point, a given difference score is also as likely to be plus as to be
minus because for each A; - Bi difference score in the population
there is an equally likely "mirror-image' difference score of equal
magnitude but opposite sign. Therefore if either (a) the A population
and the B population are identical, or (b) if the A and B populations
are symmetrical about the same point, each difference-score, what-
ever its magnitude, will be as likely to be plus as to be minus. Since
plus and minus are equally likely algebraic signs for each of the n
difference magnitudes, each of the 2™ different possible arbitrary
assignments of algebraic signs to the obtained difference magnitudes
is equally likely for a sample containing these difference magnitudes
(provided no difference magnitudes are zero for which an algebraic
sign is meaningless). That is to say, there are two ways of assigning
algebraic sign to the first difference magnitude; for each of these ways
there are two ways of assigning sign to the second magnitude, making
four distinguishable combinations; for each of these four combinations
the third magnitude can be treated in two ways, making eight combina-
tions, etc., so that for n difference scores there are 2t distinguish-
able patterns of algebraic sign which can be "'superimposed' upon the
obtained set of difference magnitudes; and if the sampled populations
are either identical or symmetrical about the same point each of these
2" sets of difference scores were exactly as likely to have been drawn
as a sample as was the set constituting the obtained sample.
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Imagine now that for each of the 2™ sets of difference scores a
mean difference has been calculated by summing the n difference scores
and dividing by n, If the A and B populations are identical or are sym-
metrical about the same point, each of these 2™ mean differences will be
equally probable, The N largest of these 2" mean differences should
therefore contain the mean difference for the obtained sample in exactly
a proportion En of such experiments. On the other hand, if the A and
B populations©re identical in form but differ in location, or if they are
both symmetrical but not symmetrical about the same point, the mean
difference for the obtained sample is more likely to lie among the ex-
treme N of the 2" mean differences than the proportion — would imply,

2N
And even if the two populations have nonidentical, asymmetrical forms,
one would generally expect large mean differences to be more likely
than small ones if the populations have different means.

b. Null Hypothesis, Each of the 2" unique sets of difference
scores obtainable by arbitrarily assigning algebraic signs to the ob-
tained difference-score magnitudes is equally likely to have been
drawn as a sample., Either of two conditions 1is sufficient to insure
the validity of the null hypothesis: (a) the sampled populations are iden-
tical, (b) the sampled populations are both symmetrical and are sym-
metrical about a common point. By taking as the rejection region the
N sets with the N greatest mean differences, the method of randomiza-
tion tests the null hypothesis that populations are identical or symmet-
rical about a common point against the alternative that the populations
have different means. It is merely '""most sensitive' against this alter-
native, however, since nonidentity of populations with equal means can
also cause rejection, Certain assumptions, therefore, are necessary
to eliminate such alternatives when they are not desired.

c. Assumptions. By taking as the probability fraction the
ratio of the number of ways certain events can occur, it is implied
that each way is equally probable when the null hypothesis is true and
unequally probable when it is false., However, they can be unequally
probable, not because populations violate the null hypothesis, but rather
because of bias in the selection of samples or because of the influence
of one sample unit upon another. Therefore, in order to eliminate
such contingencies, it is assumed that sampling is random and obser-
vations are independent,

By using 2™ as the denominator of the probability fraction, it
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is implied that each difference-score has two possible values, one plus
and the other minus, This means that there must be no zero differences,
or the equivalent, but more general, assumption of continuously distri-
buted populations may be made.

If the populations do not have the same form or if they are not
symmetrical, then the obtained difference scores are not necessarily
as likely, a priori, to be minus as to be plus even though the sampled
populations have equal means, In order therefore to "eliminate'" such
causes of unequally likely signs and confine the cause to unequal popu-
lation means, it is necessary to introduce the assumption that either
(a) the two sampled populations have identical forms, differing, if at
all, only in location, or (b) each sampled population has a symmetrical
distribution, the two distribution forms not necessarily being the same,

d, Treatment of Ties, If the number of zero differences, t,
is small relative to the total number of difference scores, discard them
and reduce n by t in all SubSequlJ.?glt calculations, so that the denominator
of the probability fraction is 2~ °, It should be borne in mind that dis-
carding the zero differences artificially increases the power of the test,

e. Efficiency. No figures appear to be available; however,
there is reason to believe efficiency should be high, See Wilcoxon test,

f. Application, As an example, suppose that each of seven
individuals have been subjected to each of two treatments, A and B, and
that there are no sequential or interaction effects between treatments.
The data are presented in the following table.

SCORES Z MEAN
Treatment A 23116 11 1121 9 511 77111
Treatment B 8 5 2 716 41 3 35 5

Difference: A-BJ] 15{11 9 51 3 1] -2 }| 42 6

There are 27 or 128 different ways of distributing plus and minus
signs among the seven difference scores, Three of these ways result
in a positive mean difference, and six result in an absolute mean dif-

ference, as great or greater than that actually obtained. They are as
follows:
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Difference Scores > Mean

[aY)

15] 11 9 5 3 1 46 | 6,57
15] Il 9 441 6.29
15] 11 9 5 3 1 ]|-2|] 42] 6.00

m
w
L}
p—
3]

-15]-11 -9 1-5]-3|-1]-2|[-46 |-6.57
-15]-11 | -9 |-5]-3|+1 | -2]|-44|-6.29
-15f-11 | -9 } -5 | -3 | -1 | +2}|-42 |-6,00

As indicated, only a small number of the 2™ mean differences
need actually be calculated, specifically those equal to or more ex-
treme than that actually obtained or those constituting the rejection
region, whichever is less, Therefore, assuming populations iden-
tical in form, the hypothesis that treatments have equal effects can
be rejected at the 6/128 or ,047 level of significance in favor of the
alternative hypothesis that the mean effects of the two treatments
differ, Or, under a one-tailed test the hypothesis that treatment A
has the same effect or less mean effect than treatment B can be re-
jected at the 3/128 or ,023 level of significance in favor of the hypo-
thesis that treatment A has more mean effect than treatment B, If
it can be assumed that populations are either identical in form or
symmetrical , the term '"effect'" must be replaced by ""mean effect"
in the expression of the null hypothesis,

g. Discussion. The magnitudes of the n difference scores
are, with rare exceptions, unequally likely. However, if the sampled
populations are identical or symmetrical about a common point, each
of the 2" differently '""signed" sets of difference scores is equally likely
because each set contains the same magnitudes and each magnitude is
as likely to be positive as to be negative. If the null hypothesis is
false, one of the two algebraic signs will be more probable than the
other. The more probable sign would be expected either to occur
more frequently than its opposite, or to be associated more frequently
with the larger than with the smaller magnitudes, or both, The like-
lihood that a difference score had the more probable algebraic sign
would be expected to increase with the absolute magnitude of the differ -
ence score, By taking as the rejection region those sets of difference-
scores (equally probable when the null hypothesis is true) which yield
the most extreme mean differences, one is quite properly permitting
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the larger magnitudes to influence rejection more than the smaller ones.

Thus each algebraic sign may be considered to be "weighted" by the dif-
' ference-score magnitude to which it is attached. This weighting is

arbitrary, i.e., randomly determined, when the null hypothesis is

true and the distribution of the test statistic is such that each weight

is applied as frequently to positive as.to negative signs. It is only

when the null hypothesis is false that the weighting takes on a dis-

criminating function, making the test especially sensitive to differ-

ences in location.

The sample space for the test statistic consists of the B
sets of difference scores obtainable by varying the signs attached
to the same set of n difference- score magnitudes. The testisthere-

fore a conditional test in the sense that the probability fraction gh

gives the chance probability of drawing the obtained sample, or a

more extreme one, from that artificially limited sample space rather
than from the larger parent population of difference scores from which
it was actually drawn. The importance of this fact has been frequent-
ly overemphasized. When the null hypothesis is true every difference
score in the sampled population is as likely to be plus as to be minus,
not just those in the restricted sample space. Therefore the probability
of commiting a Type I error is unaffected by restricting the sample

' space, being exactly ENn whatever the particular set of difference

scores sampled. When the null hypothesis is false the relative prob-
ability of possession of the two algebraic signs may differ greatly
from one population difference-score magnitude to another and not
necessarily in any direct relationship to the absolute size of the mag-
nitude. Since chance determines which of these population difference-
scores will be drawn for the sample, chance plays a large role in
determining whether or not a false hypothesis will be rejected. How-
ever, this is equally true of nonconditional tests. It is more or less
assumed, for both conditional and nonconditional tests, that the sample
is fairly representative of the population. To the extent that this is
untrue both types of test are likely to err; to the extent that it is true
the restriction of the sample space of Fisher's conditional test statistic
is not a serious shortcoming of the test.

In connection with criticisms of the conditional nature of
Fisher's test it has sometimes beenfallaciously implied that the test
statistic has the same distribution under an alternative hypothesis as it
has under the null hypothesis. When the null hypothesis is false, just as
many ofthe 2R possible values of the test statistic lie inthe rejection region
as when the null hypothesis is true. However, when the null hypothesis
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is true each of these 2™ values is equally probable, whereas when it

is false, those values occupying the rejection region are more probable
than the ones occupying the acceptance region, thus biassing the test
(properly so) in favor of rejection. Student’s t test operates in much
the same way. The set of possible values of t is the same whether

the null hypothesis is true or false; it is only their probabilities which
differ. When the null hypothesis is true the possible values of t con-
stituting the rejection region have a cumulative probability of a, whereas
when it is false they have a cumulative probability greater than a. It

is incorrect, therefore, to imply, as has been done, that under the method
of randomization the test statistic has the same distribution under alter-
native hypotheses as under the null hypothesis, This is no more true

of the method of randomization than of Student!s t. Although Fisher's
and Student's tests operate in somewhat similar ways, however,
Fisher's test cannot be regarded as giving the "true! probability

which Student's test "approximates!., This has sometimes been implied,
the difference in the two probabilities being attributed to violations of
the assumptions of Student!s test or to other artifacts, The argument,
however, is fallacious., The two tests cannot be expected to yield

equal probabilities when applied to the same sample because (a) the

test statistics do not have the same distribution, (b) the tests do not

use the same rejection region,

Although many of the criticisms of the method of randomization
have been overstated, it does have a number of shortcomings which
will be outlined in the following paragraphs,

Two types of information are used in the test: algebraic sign
and magnitude, When the null hypothesis is true magnitudes are ran-
domly associated with equally likely algebraic signs, When it is
false magnitudes become nonrandomly associated with unequally prob-
able algebraic signs in a complex way: for some magnitudes one al-
gebraic sign becomes more probable than the other, and for other mag-
nitudes the reverse is probably the case. Presumably the larger the
magnitude the more likely it usually is to have the algebraic sign indi-
cating the true direction of difference; however, there is no justification
for assuming that this relationship is linear or even monotonic, Since
each sample consists of a different set of magnitudes and since the mag-
nitudes are, in effect, weights, each sample from the same population
is subjected to a different weight function. Since the weight function
varies from sample to sample and since the relationship of weight to
the probability of a given algebraic sign is unknown, probability levels
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for samples from the same population are not strictly comparable.
Another way of stating this is that probability levels are not strictly
comparable because no two samples use the same rejection region,

Another, related, disadvantage of Fisher's method is that
the test is quite sensitive to isolated extreme difference scores, Sup-
pose, for example, that the obtained set of difference-scores were
+1, +2, +3, +4, +5, +6, +7, +8, +9, +50, There are 210= 1024
possible ways of assigning signs to these magnitudes and the mean dif-
ference for the obtained sample can be equaled or exceeded in only
one of them, so the obtained sample has a one-tailed probability of
1/1024 or less than ,001, However if the algebraic sign of the 50
is changed to minus, the obtained mean difference becomes -,5 which
can be exceeded by any of the 512 assignments in which the 50 is plus.
The one-tailed prob;b—ility therefore drops from less than , 001 to
slightly more than ,50 simply by changing the sign of one of ten dif-
ference scores, This is in no way improper since, if the null hypo-
thesis is false, one would expect the difference in probability between
a +50 and a -50 to be much greater than the difference in probability
between a+l and a-1, However it shows that the test gives great
weight to isolated extreme differences which frequently one wishes to
deemphasize because of the likelihood that they are spurious or repre-
sent atypical performance (or response).

A final disadvantage is that Fisher's method of randomization
requires that of the 2" possible "ways' of calculating a mean difference
(using the same set of n difference magnitudes but varying their alge-
braic signs) the experimenter must actually enumerate either the num-
ber of ways constituting the rejection region or the number of ways
which result in a mean difference equaling or exceeding the one obtained,
whichever is less, If n is large, or if n is of moderate size and a is
large, the computations are likely to be so lengthy as to make the test
impractical, Since the exact forms of the sampled populations are
unknown the sample difference scores are of unpredictable magnitude

and it is impossible to construct probability tables in advance of
sampling,

h, Tables., None. Probabilities must be calculated for each
specific case,

i, Sources. 4, 7, 17, 26, 27, 34, 38, 39, 40, 48, 75.

See also 16, 28, 41, 42, 43, 67, 68 under 4, Fisher's Method of Ran-
domization: Unmatched Data,
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2. The Wilcoxon Test: Matched Pairs

a. Rationale, Wilcoxon has modified Fisher's method by
replacing the obtained difference-scores with the ranks of their abso-
lute magnitudes, each rank being given the algebraic sign of the dif-
ference-score which it replaces. The test statistic is the algebraic
sum of the signed ranks rather than the average signed rank; since
the former is always n times the latter, the two have equivalent dis-
bributions, Wilcoxon's modification has several advantages over the
original test, First, the test is not a conditional one since the sample
space for the test statistic is the same for every sample. Thus every
sample is made comparable with every other sample of the same size
in the sense that the set of numbers by which the signs of the differences
are weighted is always the same: the sign of the largest difference
magnitude always being given a weight of n, the next largest, n-1,
etc. Second, the test is less sensitive to extreme difference-score
magnitudes since the most extreme magnitude will receive a rank only
one greater than the next-to-extreme magnitude, etc. Finally, by
using ranks, the probabilities can be tabled, since for any given n,
instead of n random and unpredictable magnitudes, the magnitudes
consist always of the integers 1 to n.

If each obtained difference-score magnitude is as likely to
be plus as to be minus, then so is its rank, The rationale for the
Wilcoxon test therefore parallels that for Fisher's method of random-
ization, See 1, Fisher's Method of Randomization: Matched Pairs,

b. Null Hypothesis. Each of the 2™ unique sets of signed
ranks, obtainable by arbitrarily assigning algebraic signs to the ranks
of the difference-score magnitudes from the obtained sample, is
equally likely to have resulted from the random sampling process.
Either of two conditions are sufficient to insure the validity of the
null hypothesis: (a) the sampled populations are identical, (b) the
sampled populations are both symmetrical and are symmetrical about
a common point, For populations which are identical or symmetrical
about a common point, medians, as well as means, are equal. And
if the two populations are symmetrical, but symmetrical about differ-
ent points, or if they have identical forms, but different locations,
then medians, as well as means, differ, Thus, if all assumptions are
met, the Wilcoxon test is both a test for equality of medians and a test
for equality of means.
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c. Assumptions, See 1, Fisher's Method of Randomization:
Matched Pairs, substituting ''mean and median" for '""mean'.

d. Treatment of Ties, If there are an even number, x, of
zero difference scores, consider them to "occupy' the x lowest ranks,
give each of them the midrank, and assign half of them a plus sign, half
a minus sign in the obtained sample. Thus, if there are x zero differ-

= i

1=l

ences, each receives the rank and half of these identical ranks

are given a plus, half a minus, If there are an odd number of zero
differences, the odd one may be discarded and n reduced by one. Or,
z;x+1 i
: . : i=1 x
all x+1 zero differences may be given the midrank - and -E- +1
of these may be given the algebraic sign least conducive to rejection

of the null hypothesis, the remainder receiving the opposite sign.

If nonzero differences are tied in absolute magnitude, the
members of each tied group should be given the midrank of the group,
i. €., the average rank the members of the group would have if not
tied but differing infinitesimally in magnitude. The midrank of each
tied member is then given the algebraic sign of that member. An
error, which is usually small, is introduced by the occurrence of
ties and their treatment in this manner. For example, consider the
following set of signed ranks: 1, 2, 3, -4, 5, 6, 7. An equal or
smaller negative rank sum can be obtained in six ways and the signi-
ficance level for the corresponding one-tailed test is 6/2' or . 047.
However, if the first two ranks are tied, the set becomes 1 1/2,
11/2, 3, -4, 5, 6, 7 and there are only five ways of obtaining an
equal or smaller rank sum (because 3 and 1 1/2 sum to 4 1/2 while
3 and 1 sum to 4, the value not to be exceeded). The significance
level is therefore 5/27 or .039,

The above treatment minimizes error in the long run. To
insure that zero or tied differences do not spuriously cause rejection
in a specific case, arbitrarily assign the tied-for ranks to each set
of tied difference scores (including zero), then give each of the resulting
ranks that algebraic sign which is least conducive to rejection of the
null hypothesis.

It has sometimes been recommended that all zero differences
be discarded and n be reduced accordingly, The reason usually given
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is that power is greatest if zero differences are treated this way.
However, the '"increase' in power is quite deceptive since the increase
in the probability of rejecting a false null hypothesis is paralleled by an
increase in the probability of rejecting a true one. The latter increase
raises the actual value of q while its nominal value remains the same.
The increase in power is therefore a spurious one which cannot be re-
garded as an advantage., See''Treatment of Ties' of the Sign test,

e. Efficiency. Asymptotic relative efficiency, compared with
Student's t-test when both tests are applied to populations meeting all
of the assumptions of the t-test, is 3/7 or .955. The corresponding
efficiency for finite samples increases with decreasing sample size,
becoming as high as . 995 in certain cases. See 3, Test for Location of
the Median.

f. Application, Let the following table represent data collected
in the application of treatments to pairs of rats from a common popula-
tion, the pairing having been done on the basis of weight. The null hy-
pothesis is that for each weight category the two treatments have effects
which are either identically distributed or are symmetrically distributed
about the same median, The alternative hypothesis is that in one or
more weight categories the two treatment effects do not have common
medians and means,

Treatment A 42 34 63 27 46 49 54 39 46 101
Treatment B 42 | 5 59 34 38 40 43 25 32 33
A-B Difference 0 0 4 -7 8 9 11 14 14 68

E

Magnituderanks 11/2{11/2. 3. 4. 5 6 17 81/2 81/2 10
]

Signed ranks 1 1/21-1 1/2%i 3i-4, 5;.6{ 7. 81/2 81/2t 10

The sum of the negatively signed ranks is -5 1/2. A negative sum
that small or smaller can be obtained in the following ways:

114



11/2 11/2) 3 4 -5+t 6 i 81/2 81/2 10
Jai2 | ta/2l 3l 4] st 6487 81/21 B®81l2 10
11/2 1 -11/23 3] -al 51 61 7] 81721 Bi1/2 10
1172 11/21 3] -4! 51 61 7] 81/2] 81/2 10
1 a2 | za2lssl 4 5% &l 71 8ir2l 8112 10
11/2L v i7>i-3F 4! 61 6f 71 83/21 B112 10
A izl narelegl @) 5% el gli'8iml Bij: 10
11/2 1 -11721 3] 41 5! 6l 741 81/2 81/2 10
di1fzl-11/20 3 4f 51 641 7] etjz] 81L/2 10
-11/2 | 11/2]3| 4. 54 6| 7] 81/2] 81/2 10
11/2 11/2} 3 41 5; 6] 7| 81/2 81/2 10

Thus 11 of the 1024 possible assignments of algebraic sign to the ranks
shown above lead to a negative sum as small or smaller than that de-
rived from the obtained sample. The significance level for a one-
tailed test of the hypothesis that treatment A produces the same or
less ''location' effect than treatment B is therefore 11/1024 or slightly
greater than ,0l, For a two-tailed test, there would be 22 assign-
ments giving a sum with absolute value as small as that obtained, and
the significance level would be 22/1024 or approximately .02. In
practice, significance levels would have been obtained from one of the
many tables available and the above enumerations would have been un-
necessary. One need only find the sum of the positively signed ranks
and the sum of the negatively signed ranks for the obtained sample.
The smaller of these two sums in absolute magnitude is referred to
prepared tables.

g. Discussion, In analogy with the treatment of Fisher’s
test, when the Wilcoxon test is used as a test for location it has been
assumed that the two sampled populations have either the same form
or forms each of which is symmetrical, This means that '"treatment",
if it produces any effect at all, merely causes a translation or slippage
of one distribution relative to the other along the x-axis. Such uncom-
plicated treatment effects are, in fact, seldom encountered since fac-
tors affecting the location of a distribution tend also to affect its dis-
persion and form, It is reasonable enough to consider that the popula-
tions have either identical or symmetrical forms if the null hypothesis
is true because a true null hypothesis implies that one of these condi-
tions exists (and implies further that they have identical location para-
meters). A false null hypothesis does not imply it. Since the assump-
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tion is an unrealistic one, it is of interest to examine the likelihood
that its failure to be met will cause false acceptance of the alterna-
tive hypothesis that the populations differ in location.

If the assumption is dropped, then, when the null hypothesis is
false, the true situation may be described by one of a number of alter-
native hypotheses: (a) the two populations differ in all location para-
meters and have symmetrical or identical forms, (b) the two popula-
tions differ in all location parameters and do not have symmetrical
or identical forms, (c) the two populations differ in certain location
parameters but not others and do not have symmetrical or identical
forms, (d) the two populations have identical location parameters and
do not have symmetrical or identical forms, If either (a) or (b) is
true the experimenter does not err in accepting the alternative hypo-
thesis that the two populations differ in location. If (d) were true it
would mean that two populations in each of which mean and median
differed (because the populations are not symmetrical) had equal means
and equal medians but different, asymmetrical forms, This requires
the unlikely coincidence that two curves with different contours either
cross or touch at each of two specified points., The probability for
(d) is therefore obviously very small, For (c) however it is required
only that different curves, at least one of which is asymmetrical, cross
or touch at one of certain specified points, Thus the two populations
may have equal means but unequal medians or the reverse. Case (c),
therefore, is not at all improbable, and it raises the question, "To
which location parameter is the test most sensitive ?"

Fisher's test took the mean difference as its test statistic and,
in effect, took extreme mean differences as its rejection region. The
mean difference is the same as the difference between sample means.
There is therefore a direct relationship between the test statistic and
the difference between populations means., Fisher's test, therefore,
would be expected to be most sensitive to differences between means.

The situation is not nearly so clear cut in the case of the Wil-
coxon test. Here the test statistic is neither the difference between
means nor the difference between medians, nor does its rejection re-
gion consist of such measures, In Fisher's test the average differ-
ence score is also the difference between sample means, but in Wil-
coxon's test the average signed rank, which is, in effect, the test
statistic, does not correspond to any statistic indicating difference in
a standard location parameter.
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To pursue the question further, if no assumptions other than
continuity, randomness and independence were made, Fisher's test
would still appear to be a reasonable test for differences in means,
The Sign test, which ignores difference-score magnitudes and uses
only their direction, i.e., algebraic sign, is obviously the appropriate
analogous test for difference in population medians. But Fisher's
test, the Wilcoxon test and the Sign test all use the signs of difference
scores, differing primarily in the weight which the signs are given
prior to summing, For the Sign test the weight is always 1, for
the Wilcoxon test it is the rank of the difference-score's absolute
magnitude, and for Fisher's test it is the absolute magnitude itself.
The Wilcoxon test therefore is intermediate between a test sensitive
only to differences in medians and a test sensitive primarily to dif-
ferences in means., Under the limited assumptions listed above,
therefore, the Wilcoxon test should be considered sensitive to both
differences in medians and differences in means. Without the
ascumption of symmetrical or identical forms, therefore, it would
be futile to attempt to specify which location parameters differ when
the null hypothesis is rejected,

Both Fisher's and Wilcoxon's test test the null hypothesis
that for every matched pair the observations come from identical
populations or populations symmetrically distributed about a common
point. It is not assumed that the members of every matched pair
are sampled fromthe same two populations. There may, in fact,
be as many pairs of populations as there are difference scores. How-
ever, if each pair of units be regarded as equally "important", i.e.,
to be given equal, apriori weight in determining whether to reject
or not, another assumption is required. Under the conditions stated,
in order to obtain optimal power it must be assumed that each differ-
ence score is as likely to have been obtained from one matched pair
of units as from another, This, in turn, means that whatever the
variation among the various A-populations or among the n different
B-populations, the n difference scores came from identical differ-
ence-score populations,

This assumption is analogous to that of homoscedasticity.
Without the assumption, if for every matched pair the A and B popula-
tions are identical, the pairs whose AB populations have greatest
variance are the pairs most likely to have difference scores of large
magnitude. These particular pairs will therefore exert greater in-
fluence upon the outcome of the test than will those whose AB populations
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have relatively small variance. When the null hypothesis is false,
large difference-score magnitudes resulting from real treatment
effects may tend to be cancelled out by large difference-score mag-
nitudes resulting from large population variances and having, by
chance, the opposite sign. The power of the test is therefore affected
adversely when the assumption is not met.

It has sometimes been claimed that so long as the members
of each pair were obtained under matched conditions, the basis for
matching may vary from pair to pair. It is clear that such a procedure
is quite likely to result in unequal population variances for the various
A populations as well as for the B populations and thus, probably, for
the population of AB differences. Therefore the power of the test is
likely to be altered in such a way that the matching criteria will in-
fluence the outcome of the test and the influence of certain of the cri-
teria will be greater than that of others. Furthermore, a certain
ambiguity arises when the null hypothesis is rejected because it is
not clear what alternative hypothesis is to be embraced. A sample
of variously matched scores can only be regarded as representing
a multivariate, or at least "multiconditional' population. Therefore,
it is this population to which statistical inference must be extended,
and conclusions must lack a certain specificity.

To summarize, it is true that the mathematical basis of the
Wilcoxon test does not require the assumption that all paired scores
were matched on the basis of the same criterion, However, unless
such a procedure is followed, the test is likely to be biassed in the
sense that certain pairs will yield difference-scores with greater var-
iance, and therefore be given greater influence over the tests outcome,
than others, and it is unlikely that the experimenter will know which
pairs are so favored. This unknown and unequal influence makes inter-
pretation of the test extremely unclear whether the null hypothesis is
rejected or not. And if the null hypothesis is rejected it is not clear
what alternative hypothesis to accept because the cause of rejection
is uncertain.

h., Tables, Tables can be found in 53, 70, 72, 73, and in some
of the sources listed in the introduction. For cases not covered by
existing tables, exact probabilities may be calculated by the method
of complete enumeration, or approximate probabilities may be obtained
from normal tables by treating the rank sum as a normal deviate, Let
T be the rank sum for ranks of one sign. Then, if the null hypothesis
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is true, T comes from a population of rank sums whose mean is

E(l:;_l)_ and whose variance is _n_l(_rzlﬂ .

the distribution of T approaches the normal distribution, Therefore
the approximate probability level for T can be obtained by referring the

As n approaches infinity,

T.2D (n+1)
critical ratio = to normal probability tables, The approx-
Jn (n+1)
— 1

imation is reasonably good, when n is large, except at the extreme
tails of the normal distribution., Therefore extreme levels of signi-
ficance, such as the . 001, should not be adopted when the normal ap-
pProximation is used.

i, Sources. 53, 70, 71, 72, 73, 74. See also 5, The Wilcoxon
Test: Unmatched Data.

3. Test for Location of the Median

a. Rationale, Let n observations be taken from a continuous,
symmetrically distributed population and let the population median be
subtracted from each observation, Then the difference-scores con-
stitute a sample of size n from a continuously distributed population
symmetrical about a median of zero. Therefore each of the n dif-
ference-scores was as likely, before sampling, to be positive as to
be negative., And since the populations are continuous, zero differ-
ences are not to be expected. Now, rank the difference scores in
order of absolute magnitude and give each such rank the algebraic
sign of the difference-score whose magnitude it represents, If the
true population median was subtracted from each of the n difference
scores, the rank sum for ranks of one algebraic sign will have the
same distribution as that tabled for the Wilcoxon matched pairs test.
In fact, this test may be regarded as a Wilcoxon test in which the A-
population is symmetrical and the B-population is a single value, the
median of the A-population,

Actually the n observations need not be taken from the same

population, Each observation may be drawn from a different popula-
tion so long as every sampled population is continuous and symmetrical.
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b. Null Hypothesis, Each of the 2" unique sets of signed ranks,
obtainable by arbitrarily assigning algebraic signs to the ranks of the
difference-score magnitudes, is equally likely to have resulted from
the random sampling process. This will be the case if all assumptions
are met and if all sampled populations have the same median,

c. Assumptions. Random and independent observations and
no zero differences, or preferably continuously distributed populations,
(For reasons see 1, Fisher's Method of Randomization: Matched Pairs)
In addition it is assumed that every sampled population is symmetri-
cally distributed. Therefore, if all assumptions are met the null
hypothesis can be false, i.e., plus and minus can be unequally likely
signs for a difference score, only because the subtracted, hypothe-
sized median is not the true population median,

d., Treatment of Ties. See 2, The Wilcoxon Test: Matched

Pairs.

e, Efficiency, Asymptotic efficiency relative to Student's
t when both tests are applied to normally distributed populations is
3/7 or .955 (Pitman quoted in 53). Small sample efficiency for same
situation appears to vary between , 875 and . 995 forn < 15 (53, 64, 65,
66),

f. Application, Subtract the single hypothesized median
from each of the n obtained observations. Apply the Wilcoxon matched-
pairs test to the difference scores, If the null hypothesis is rejected,
conclude that the hypothesized median is not the true median in all of
the populations sampled.

Alternatively, apply the Walsh test (see Discussion) to the
difference scores, drawing the same conclusion if the null hypothesis
is rejected.

g. Discussion, Walsh (64, 65, 66) has outlined a test which
Tukey (53) has shown to be equivalent to the above application of the
Wilcoxon test, Walsh assumes populations each of which is continuous
and symmetrical and tests the hypothesis that all populations have a
common specified median, An observation is drawn from each popu-~
lation and the n observations are then ranked in order of algebraic
magnitude, The null hypothesis is rejected if certain order statistics
(depending on the tail or tails selected for the rejection region) exceed
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or are exceeded by the hypothesized median. The order statistics used
are the averages of two observations of specified rank. The efficiency
of the test is high, being the same as that of the Wilcoxon test, and tables
(64, 65, 66) are available for small values of n. Tukey has pointed

out that the Wilcoxon test is easier to apply when testing the hypothesis
of a common median of specified value, while the Walsh test is easier
for setting confidence limits for the median. This follows from the
manner in which the Walsh test is applied: the null hypothesis is re-
jected if the hypothesized median falls above or below a difference
score of a certain rank or the average of two difference scores whose
ranks are specified. The Wilcoxon test, on the other hand, estab-
lishes confidence limits by a trial and error method (74). See 53

for exact Walsh method.

h, Tables. Tables listed under 2, The Wilcoxon Test:
Matched Pairs, are appropriate. Also 64, 65, and 66 give tables
specifically designed for this application and particularly appropriate
for setting confidence limits,

i. Sources. 53, 64, 65, 66,

4, Fisher's Method of Randomization: Unmatched Data

a. Rationale. If two samples, of sizes m and n, are random
samples from the same population, they may be regarded as a single
sample of size m+n which has been drawn from the parent population
and then divided on some random, i.e. chance, basis into two sub-
samples of sizes m and n. If the observations are not matched or
paired in any way and if no observations have the same value, there

+ : . g
are (mnn) different ways such a '"'split'" could be obtained, and each

of these ways is equally likely.

Now suppose that for each "'way' some statistic, say the mean,
is calculated for each of the two subsamples and the difference XA XB
obtained, the subscripts A and B being arbitrary labels to identify the

two subsamples. If N of these —)EA - XB differences equal or exceed
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the SC_A - EB difference for the actually obtained samples, then the

chance probability of the actually obtained X, - X, difference or one

A B
more extreme among the differences calculated for the (m+n)
n
Msplits' is N/(T 1)

If the two original samples were actually obtained under
two different treatments, then if the treatments have equal effects,
the samples are, in effect, samples from the same population, Thus
the hypothesis of identical treatment effects can be tested at the o«

level of significance by rejecting the hypothesis if N/(T17) < .

b. Null Hypothesis. Each of the (m:n) differ ent pairs of

"samples' obtainable by dividing the total of m+n observations into
two sets, one containing m observations, the other n observations,
is equally likely to have been obtained in the experiment. A suf-
ficient condition for the validity of the null hypothesis is that the

two sampled populations are identically distributed. This will be
the case if treatments do not differ in their measured effects on
individuals and if individuals are assigned randomly to treatments,
By taking as the rejection region the N pairs of sets with the N
greatest mean differences, the method of randomization tests the
null hypothesis that populations are identical and is "'most sensitive"
to the alternative hypothesis that the populations have different means.

¢, Assumptions, Bias in the sampling process or possible
influence of one sampled observation upon another may cause

some of the (m:n) pairs of rearranged samples to be more likely

than others to have been the pair actually drawn, And this may be
the case even though all observations in both samples are drawn from
the same population, Therefore, in order to confine the cause of
unequal probability to failure of the null hypothesis, it is necessary
to assume that sampling is random and observations are independent,

If any of the m+n observations have the same value there will
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be less than (m+n) distinguishable rearrangements of observations
n

into samples of sizes m and n, Thus the sample space for the test
statistic will be smaller than that represented by the denominator of
the probability fraction. In order to "eliminate' such an eventuality,
it is assumed that there are no tied observations, This assumption is
sometimes expressed in its mathematically equivalent form: popula-
tions are continuously distributed.

If the two sampled populations do not have identical forms,
the (m:n) pairs of hypothetical samples may be, and probably are,

unequally probable even though the two populations have the same mean.,
For example, if the two populations are normally distributed with the
same mean but different variances, the ''splits' which give the more ex-
treme observations to the '"'sample' from the population with the greater
variance are more probable than are the ''splits'" which do the opposite.
Furthermore, if the two populations have both unequal means and dif-
ferent forms, the inequality of means may bias the probability in one
direction and the dissimilarity of form may bias it in the opposite
direction. Thus the two causes of unequal probability may tend to
balance one another. It is extremely unlikely that this balance would

be complete, leaving each of the (m:n) pairs of samples equally prob-

able. However the power of the test would be adversely affected. In
order, therefore to confine the cause of failure of the null hypothesis
to inequality of population means, the alternative hypothesis, it is
assumed that, whatever their location, the two sampled populations
have identical forms,

Since the last named assumption is a fairly unrealistic one,
the experimenter may prefer to substitute the more reasonable assump-
tion that if population means are equal their forms are identical. Thus
any dissimilarity of form must be accompanied by an inequality of means,
and the null hypothesis can be false only when means differ, When the
null hypothesis is false, then the alternative hypothesis of unequal means
must be true. However, the power of the test to detect the validity of
the alternative hypothesis may be much smaller than would be the case
if identical forms could be legitimately assumed.
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d. Treatment of Ties, If a small proportion of the observa-
tions are tied it may be reasonable to suppose that the ties are attri-
butable to the discreteness of the measuring instrument rather than
lack of continuity in the distribution of the thing measured. Therefore,
treat each tied observation as though it were unique in determining N,

+ :
and use (mnn) unaltered, as the denominator of the probability fraction,

e. Efficiency, High efficiency for this test is suggested by
the high efficiency of the Wilcoxon test which is a modification of it.
See 5, The Wilcoxon Test: Unmatched Data.

f. Application, To modify an example given by Fisher, sup-
pose that the height, in centimeters, has been measured for 8 English-
men and 7 Frenchmen, and that it is desired to test the hypothesis that
Englishmen and Frenchmen have the same average height,

X

Englishmen: 188, 182, 178, 177, 176, 174, 173, 170 | 177,25

Frenchmen: 172, 171, 169, 165, 164, 162, 160, 166, 14
X -X_ = Vi 34

E F

There are (%75) or 6435 different ways of reassigning the height meas-

urements so as to give eight of them to Englishmen, seven to French-
men, In only four of them will the Englishmen's mean exceed the

Frenchmen's mean by a value as great as that obtained in the actual
samples:

X
Englishmen: 188, 182, 178, 177, 176, 174, 173, 172 177.50
Frenchmen: 171, 170, 169, 165, 164, 162, 160 165, 86
XE - XF = 11,64
Englishmen: 188, 182, 178, 177, 176, 174, 173, 171 1.77..375
Frenchmen: 172, 170, 169, 165, 164, 162, 160 166, 00
XE - XF = 11 35
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X

\

Englishmen: 188, 182, 178, 177, 176, 174, 173, 170 L7 25
Frenchmen: 172, 171, 169, 165, 164, 162, 160 l166.14

X - Xp = 11,11
Englishmen: 188, 182, 178, 177, 176, 174, 172, 171 | 177.25
Frenchmen: 173, 170, 169, 165, 164, 162, 160 '166.14
X, - Xp = 11,11

Thus the significance level for a one tailed test of the hypothesis that
the average Frenchman is as tall or taller than the average Englishman
is 4/6435 and the hypothesis could be rejected at an extreme level of
significance, Since the hypothesis is that Englishmen and Frenchmen
have equal average heights, there are, in addition to the four ways, in
which so great a mean difference could be obtained in favor of the
Englishmen, the following four ways in which so extreme a mean dif-
ference can be found in favor of the Frenchmen.

X
Englishmen: 172, 171, 170, 169, 165, 164, 162, 160 166,625
Frenchmen: 188, 182, 178, 177, 176, 174, 173 178,286

XE - Xgp = -11,661
Englishmen: 173, 171, 170, 169, 165, 164, 162, 160 166,750
Frenchmen: 188, 182, 178, 177, 176, 174, 172 178,143
XE - XF = -11,393
Englishmen: 173, 172, 170, 169, 165, 164, 162, 160 166, 875
Frenchmen: 188, 182, 178, 177, 176, 174, 171 178,000
XE-XF= -11,125
Englishmen: 174, 171, 170, 169, 165, 164, 162, 160 166, 875
Frenchmen: 188, 182, 178, 177, 176, 173, 172 ' 178,000
XE- XF= -11,125
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Thus for a two-tailed test of the null hypothesis that there is no dif-
ference between the average heights of Englishmen and Frenchmen,
the significance level is 8/6435.

It happened in the above example that the number of mean
differences as great as the absolute value of the obtained mean dif-
ference is the same for positive as for negative mean differences.

This is certain to be the case only when m = n. When the two samples
are of unequal size, the significance level for a two-tailed test is not
necessarily twice that for a one-tailed test, because symmetry no
longer obtains.

g. Discussion. Many of the points requiring discussion are
highly analogous to those discussed under 1, Fisher's Method of Ran-
domization: Matched Pairs ; therefore, the arguments will not be re-
peated here.

Obviously the Method of Randomization is not restricted to
testing for differences between means. The significance of a variety
of "difference' statistics calculated from two samples can be tested

m+n

by '"'calculating' the statistic for each of the ( 0

) splits and taking
as the rejection region those N splits for which the calculated statistic
has the N most extreme values, the significance level, a, being

m+n
N/( ” ).  The "most extreme'' values are of course those most sug-

gestive that the alternative hypothesis, rather than the null hypothesis,
is true., The alternative hypothesis states, in effect, that the popula-
tion statistic corresponding to the statistic calculated from the obtained
samples is not zero. However, unless the sample statistic can be
expected to "'represent' well its population counterpart, the power of
the test may be very small., For example, the method could not be
expected to provide a powerful test for a difference in population ranges.

Pitman (41, 42, 43) has elaborated upon the method of testing
for a difference between population means and has applied the Method
of Randomization to testing the significance of a correlation coefficient
(See next chapter) and to testing the effect of treatments in an analogy
of analysis of variance. The latter problem has also been investi-
gated by Welsh (67, 68). '
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To test for treatment effects in analogy with analysis of var-
iance, Pitman takes m batches (letters) of n individuals each of which
is subjected to a different one of n treatments (numbers), the assign-
ment of individuals to treatments being random. The scores of the
individuals can be represented as follows:

al’ aZ’ o0 s 0 an
b, bz, ... b
m1’ mz LI I Y mn

If there is no treatment effect, the n scores in each row are randomly
placed in the n '"treatment' columns. There are n! ways in which
the observations in a row can be permuted and since there are m rows,

there are (n!)” tables which can be obtained by permuting the obser-
vations within rows. However, some of these tables differ only in

the permutation of identical columns., This can be prevented by per-
mitting permutation of observations in all but the last row. Therefore,
there are (n! )m-l ways in which the mn observations can be assigned
so that each column contains one observation from each batch and so
that no two assignments are identical except for the location of col-
umns with respect to each other. Pitman calculates the equivalent
of the F ratio for each such assignment and rejects the hypothesis of
no treatment effect at the significance level a = N/(n! )m—l if the F
ratio for the actually obtained sample lies among the N most extreme
of these.

h. Tables. None. Probabilities must be calculated for
each specific case.

i. Sources. 4, 7, 16, 26, 27, 28, 34, 39, 40, 41, 42, 43,

48, 67, 68, 75, See also 17 and 38 under 1, Fisher's Method of Ran-
domization: Matched Pairs.
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5. The Wilcoxon Test: Unmatched Data

a. Rationale. Wilcoxon has modified Fisher's method by
replacing the obtained scores with their ranks. The test statistic,
which in Fisher's method was the difference in sample means, is,
in Wilcoxon's test, the rank sum for the smaller sample, or when
samples are of equal size, the smaller of the two sample rank sums,
The Wilcoxon modification has advantages similar to those discussed
in "Rationale' of 2, The Wilcoxon Test: Matched Pairs; the test is
not a conditional one since the sample space for the test statistic is
the same for every pair of samples, the test is less sensitive to ex-
treme observations, and the probabilities can be tabled.

b. Null Hypothesis, Each of the (m;l-ln) pairs of "artificial"

samples obtainable by arbitrarily assigning m observations to one
treatment, n to the other, is equally likely to have been drawn as a
pair of true samples, If all assumptions are met, a sufficient con-
dition for the validity of the null hypothesis is that the two samples
come from identical populations, This will be the case if the two
treatments do not differ in any measured respect.

c. Assumptions, It is assumed that sampling is random,
observations are independent, no observations are tied or populations
are continuously distributed, populations have identical forms (or at
least have identical forms if population means or medians are equal).
For reasons, see 4, Fisher's Method of Randomization: Unmatched Data.

d. Treatment of Ties. If ties are due only to imprecision
of measurement, i.e., if the thing measured is continuously distri-
buted, then ties are a problem only when members of a tied group
lie in both obhtained samples. When all the observations have a given
tied value lie in one sample, they may be arbitrarily assigned the
ranks they would have if distinguishable. If observations in both
samples have the same value, one technique is to assign tied obser-
vations the tied-for ranks least conducive to rejection of the null hy-
pothesis. Another technique is randomly to assign to the members
of the tied group the ranks they would have if distinguishable. This
preserves the mathematical integrity of the test, but forceably and
artificially introduces an element of chance which must, in general,
reduce the power of the test.
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The most frequently recommended technique is to give each
of the members of a tied group the midrank of the group, i.e., the
average of the ranks the tied members would have if their values were
distinguishable. The result is that the set of ranks obtained in this
manner and rank sums obtainéd by applying Fisher's method to them
are not the same as the set of ranks and rank sums used (by applying
Fisher 's method to the m+n different integers from 1 to m+n) to cal-
culate the probability tables. The tables therefore are inaccurate in
such cases, giving not the true probability but rather the probability of
the average value taken by the test statistic when ties are broken in
all possible ways. (If all the observations having the same value lie
in the same sample, all ways of breaking ties result in the same value
for the test statistic and the tables are fully applicable if discontinuity
is due only to imprecision of measurement., )

When midranks are used the rank sum may not be an integer.
The tabled rank sums, however, are integers. Therefore, it is sug-
gested that when the obtained rank sum is not an integer it should be
raised or lowered one half unit so as to assume whichever integral
value is least conducive to rejection of the null hypothesis, This pro-
cedure results in a slightly more conservative test,

In many cases the effect of using midranks is very much the
same as if tied observations were assigned consecutive ranks with
the ranks carefully apportioned so as to '"balance' the apportionment
between the two samples, For example, suppose ten observations
are tied for 21st to 30th place in rank and two of the observations
are in sample A, the remainder in sample B, In ''balancing' one
might assign the ranks 24 and 27 to the two observations in sample
A because they separate the ranks 21 to 30 into nearly equal parts,
or 21 and 30, 25 and 26 or any other assignment resulting in a
""symmetrical' pattern might be picked. The result of course is
that in every case the average of these ranks, for each sample, is
the midrank, 25 1/2, Therefore, when "symmetrical rank patterns"
can be obtained without resorting to nonintegral ranks, the use of
midranks is equivalent to assigning to each member of a tied group
a different one of the ranks for which the group is tied and doing so
in such a way that each sample gets its ''fair share' of rank magni-
tude., If the rank sum is an integer the tables give the exact prob-
ability under the assumption that one of the possible ""equitable ap-
portionments' is the correct one. In the long run the average
difference between this probability and the true probability will tend
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to be zero; however, in any specific experiment a discrepancy of
zero is quite unlikely, Therefore, for the particular experiment
under test the probability of false rejection of the null hypothesis
may be greater or less than that indicated by the tables, Regard-
less of whether or not ''symmetry' can be obtained with integers,

the limits of 'tie-error' can easily be found. This is accomplished
by assigning tied observations the ''tied-for' ranks least conducive

to rejection of the null hypothesis, performing the conservative test,
then assigning them the ranks most conducive to rejection and perform-
ing the radical test, thereby obtaining bounds for the influence of ties
on probability levels, This procedure has been recommended by
van der Vaart (58) who observes that if the chosen significance level
does not lie between these bounds there is no problem and if it does,
there is no solution, He adds that precisely the same dilemma
arises when ties occur in the application of Student's t-test although
"this fact has always passed unnoticed, "

When samples are so large that tables are inapplicable the
normal approximation is generally used, The difference between the
obtained and the expected rank sum is divided by the standard devia=-
tion of the rank sum, and the resulting critical ratio is treated as a
normal deviate with zero mean and unit variance and referred to nor-
mal probability tables, When ties are given the midrank, the pres-
ence of ties has no effect upon the expected rank sum, but does
affect the variance, causing it to be smaller than would be the case
if there were no ties, There is a formula, however, which takes
account of ties in calculating variance and therefore '"corrects'' for
ties when used in calculating the critical ratio., This formula re-
quires that the Mann-Whitney form of the Wilcoxon test be used
(See 6, The Mann Whitney Test).

e. Efficiency., The value 3/7 or .955 has been obtained
for the asymptotic efficiency of the Wilcoxon test relative to Student's
t-test when both tests are applied to samples from normally distri-
buted populations with homogeneous variances, This value has been
obtained by a number of authors (9, 11, 37, 50, 59, 62), Pitman (not
referenced) apparently having been the first, and is true of both one-
sided and two-sided tests under several different definitions of
asymptotic efficiency. Hodges and Lehmann (23) have shown that
the asymptotic relative efficiency of the two-sample Wilcoxon test
relative to Student!s t cannot fall below , 864 when both are used as
tests against shift of a continuous, but otherwise unspecified, distri-
bution function. (The comparison is less favorable to the Wilcoxon
test when shift is accompanied by 'contaminations'). They conclude
that to the extent that the concept of asymptotic relative efficiency
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""adequately represents what happens for the sample sizes and alter-
natives arising in practice, this result shows that use of the Wilcox-
on test instead of Student's t-test can never entail a serious loss of
efficiency for testing against shift, (On the other hand ..... the
Wilcoxon test may be infinitely more efficient than the t-test. )"

In fact Pitman is quoted (23, 47) as having found an A, R, E, of 1
for Wilcoxon's relative to Student'!s test when both were applied to
uniform distributions, Pitman (23, 47) and Pitman and Noether (7)
are quoted as having found the A, R. E. of Wilcoxon's relative to
Student's test to be considerably greater than 1 when the two tests
were applied to certain types of distributions. Similar results have
also been found for small samples. Student’s test has been found to
have power inferior to that of the Wilcoxon test for testing samples
of 4 and 6 observations from certain uniform distributions (63) and
for testing samples of 5 and 5 from certain distributions differing in
peakedness (Whitney quoted in 1),

When both tests are applied to samples from normal popula-
tions with homogeneous variances, Student's test has invariably been
found to have power as great or greater than Wilcoxon's; however,
the difference in efficiency has, with one exception, always been very
slight (9, 23, 52, 59, 60, 62). The exception (9) has been criticized
(23) as attributable to a procedural artifact,

The evidence therefore supports the conclusion that Student's
t-test is statistically more efficient than Wilcoxon's test when the
assumptions of the t-test have been completely met, but that the super-
iority of the t-test is slight, amounting to less than 5%. When Stu-
dent's assumptions have not been fully met, either test may be the
more powerful, depending upon a number of factors. However, if
it is known that the populations have identical, continuous forms when
their location parameters are e qual (i. e, that if treatments have dif-
ferent effects, these include effects upon means and medians), or if
the experimenter is interested in detecting any discrepancy between
continuously distributed populations (i.e., any type of treatment effect),
then the Wilcoxon test is preferable. Rejection of the null hypothesis
can occur only because of the existence of the effect in which the ex-
perimenter is interested or because of chance with probability of
exactly oc, If Student's test were used in the same cases, rejection
could occur because of (a) the effect whose detection is desired,

(b) nonnormality, (c) chance, with probability other than « (and un-
known) unless the populations are known to be normal.
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The Wilcoxon test is one of the most powerful distribution-
free tests, Tests designed by Terry and van der Waerden, and dis-
cussed in the Introduction and in (7) are slightly more efficient, in the
statistical sense, for certain test situations. However, they lack
the Wilcoxon test's conceptual simplicity and ease of application. In
several investigations of the power of distribution-free tests with
respect to each other, the Wilcoxon test has invariably been found
to be most powerful or among the most powerful (See Table II in
Introduction).

Mann and Whitney (35) showed that the Wilcoxon test is con-
sistent "with respect to the class of alternatives f (x) > g (x) for every
x'", i,e., is consistent if the alternative to the null hypothesis of iden-
tical populations is that the cumulative distribution of one population
lies entirely above, i.e. does not cross, that of the other. Van Dant-
zig (6) and Lehmann (32) have pointed out that Mann and Whitney's
proof actually is more general., It proves the test consistent if, when
the null hypothesis is false, the probability that a random observation
from one population exceeds one from the other population differs from
1/2 (for a two-tailed test or, for a one-tailed test, differs from 1/2
in a specified direction) (30). The above results require that the
ratio m/n remain constant asn -» w0 , Putter (44) has shown that,
under the same conditions, if the populations are discontinuous and
Pr(x >y)+1/2Pr (x = y) >1/2 the test will be consistent if ties
are randomized, i.e., if ties in each group of tied observations are
randomly assigned the tied-for ranks.

Lehmann (32) has proved that the Wilcoxon test is unbiassed
when it is used as a one-tailed test, more specifically it is unbiassed
for the class of alternatives F (x) > G (x) for every x. Van der Vaart
(55, 59) has shown that the two-tailed Wilcoxon test may be, but is
not necessarily, biassed. The likelihood of such bias appears to be
greater when samples are of unequal size and when populations are
skewed,

Mann and Whitney (35) showed that their mathematically
equivalent test statistic is asymptotically normally distributed under
the null hypothesis if m and n approach infinity in any arbitrary man-
ner, Lehmann (32) has found that it is also asymptotically normally
distributed when the populations differ provided that the ratio m/n
remains constant as m and n approach infinity, Stoker (49) states
that Lehmann's proof also applies when populations are discontinuous.
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Asymptotic normality has also been proven by Haldane and Smith (20).

f. Application. Suppose that gain in weight has been measured
under two different diets with the following results for six individuals
subjected to Diet A and seven persons given Diet B,

Diet A Diet B
Weight Gain Rank Weight Gain Rank
-14 1 -3 5
-12 21/2 5 8
-12 Z 12 7 9
-10 4 8 10
- 2 6 9 11
2 7 15 12
24 13
Sum 23 Sum 68

There are (627) or 1716 ways of redistributing the scores

into samples of sizes 6and 7. Of these, there are only four ways
in which Diet A could obtain a rank sum equal to or smaller than the
obtained rank sum of 23, They are as follows (only the ranks being
shown):

Ly & W2y & L/2; 4y 85 © = =21
L, 2 1/2, 2 1/2, 4, 5, 7 B0 L
1, 21/2, 21/2, 4, 5, 8 =23
i; Bli/2, 212, 4; 6, 7 = = 28

The significance level for a one-tailed test of the hypothesis that Diet A
causes the same or more weight gain than Diet B, therefore, is 4/1716
or about , 0023,

Since the samples are of unequal size, a two-tailed test raises
the question of which rank sums to consider as extreme in the opposite
direction, Obviously they cannot be those totaling to 68 or more for
Diet A, because that number was obtained for Diet B as the sum of
seven ranks, while for Diet A only six ranks can be summed. The
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solution proposed by White (69) is to rerank the observations, this
time ranking the largest observation 1, the next largest, 2, etc.;
then the number of ways of redistributing scores which cause Diet A
to have arank sum of 23 or smaller'are those whose rank sums are as
extreme or more extreme in the "opposite direction.!" There are,
in fact, four such ways and the probability level for a two-tailed test
is therefore 8/1716., However, the reranking need not actually be
performed because the test statistic is symmetrically distributed
and the probability level for a two-tailed test is simply twice that
for a one-tailed test.

In practice, of course, probabilities would generally not
be obtained by applying the method of randomization, but would te
obtained from tables. In that case, only the rank sums need be ob-
tained. The use of tables varies considerably, however, from one
table to another, and the particulars of application will not be des-
cribed here.

Se

been published by a variety of authors, Wilcoxon developed the test

g, Discussion. Various forms of the Wilcoxon test have

for the case where samples are of equal size, i.e., m =n., White
(69) extended the test, and tabled it, to the case of unequal sample
sizes, This was also done by van der Reyden (45) at about the same
time, but apparently without knowledge of the work of either Wilcoxon
or White. A test, conducted differently, but mathematically equi-
valent to the Wilcoxon test, was developed independently by Festinger
(15) and published very soon after Wilcoxon's original article. Fest-
inger took as his test statistic the absolute difference between the
average rank for the smaller sample and the average rank for the com-
bined sample of m+n ranks., Since the latter is a constant (equal to

M) for fixed values of m and n, and since the average rank for

the smaller sample is simply its rank sum divided by its size, Fest-
inger's test is mathematically equivalent to White's extension of the
Wilcoxon test. Because of the additional computation required to
obtain the test statistic,d , Festinger's test is more time consuming than
the Wilcoxon test. A Wilcoxon-like test was developed by Haldane and
Smith (20, see also 3 and 24) for a specific application. Finally, a
modified form of the Wilcoxon test developed by Mann and Whitney (35)
has become the most widely used form of the test. It is discussed

in the next section. Because of the mathematical relationships exist-
ing between the Wilcoxon, White, van der Reyden, Festinger and
Mann-Whitney tests, they have common mathematical properties of
efficiency, consistency, asymptotic normality, etc.
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The Wilcoxon test actually tests whether or not two pupula-
tions are identical. The test becomes a test for equal means (or
substitute '"medians') if it can be legitimately assumed either (a)
that whatever their locations the populations have identical forms,
or (b) that if their means (or substitute '"'medians'') are equal the
populations have identical forms, i.e., the populations are identical.
The latter assumption is generally far more realistic than the former;
however, the test may have les s power if only the latter assumption
can be made. See "Assumptions' under Section 4, Fisher's Method
of Randomization: Unmatched Data.

Wilcoxon (71, 72, 73, 74) has extended his test to permit
a single test of data collected under several, different, non-tested
experimental conditions. Under each of k non-tested conditions,
n observations are taken under treatment A and n observations under
treatment B, Then, except for the last step of determining signifi-
cance levels, the ordinary Wilcoxon test is performed for each non-
tested condition independently, This results in a rank sum, based
on n ranks, for treatment A, and one for treatment B, under each of
the k non-tested conditions. The sum of the k rank sums is then ob-
tained for each treatment and the smaller of these is referred to a
brief, specially prepared table of probabilities. The test is legiti-
mate ( as a test for simple treatment effects) provided that when the
k non-tested conditions have different effects upon observations, any
given condition has the same effect upon observations taken under one
treatment as it has upon observations taken under the other. That is
to say, there must be no interaction between treatments and non-
tested conditions. If this implicit assumption is not met, the power
of the test may be adversely affected and when the null hypothesis
(that each of the k B-populations has the same form and location as
its A-population counterpart) is false, the true alternative hypothesis
will be unable to be specified in other than very general terms.

h. Tables., Tables can be found in 45, 69, 70, 72, 73 for
the Wilcoxon or rank sum form of the test, in 15 for Festinger's
difference-in-average-rank form, and in 1, 35, 46 (and see also 18
and 36) for the Mann-Whitney form of the test. Tables for Wilcoxon's
application of his test to data collected under a variety of non-tested
conditions are in 71, 72 and 73. Tables can also be found, reproduced,
in some of the sources listed in the Introduction.

Several of these tables have been found to contain errors.
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Auble's tables have been criticized by Fix and Hodges (18), Festinger's
tables by Kruskal and Wallis (30), van der Reyden's tables by Kruskal

and Wallis (31), and White's Tables by Fix and Hodges (18) and Kruskal
and Wallis(31).

For cases not covered by existing tables, probabilities may
be obtained by the method of randomization, or the rank sum may be
treated as a normal deviate and approximate probabilities may be ob-
tained by referring a critical ratio to normal tables, Let T be the
rank sum for the sample with m observations. Then, if the null hy-
pothesis is true, T comes from a population of rank sums whose

m+n+1

mean T is m ( > ) and whose variance O'TZ is

m + n +1
12

m n ( ). As m and n increase, the distribution of T ap-

proaches the normal distribution. Therefore, the approximate
probability level for T can be obtained by referring the critical ratio

m+n+l,

T - m ( > )

to normal probability tables, The approximation

is reasonably good, when m and n are large, except at the extreme
tails of the normal distribution. Therefore extreme levels of signifi-
cance, such as the ,001l, should not be adopted when the normal ap-
proximation is used,

If T is the rank sum for the sample with m observations when
the smallest rank is assigned to the smallest observation, and T' is
the rank sum for the same sample when the smallest rank is assigned
to the largest observation, then T'= m(m + n +1) - T. This is easily
seen: If r is the rank of one of the m observations in the first case
and r' is the corresponding rank in the second case, then rlrrf m+n -
(r-1)=m+n+1-r. !I{«.rrlld since T'=Z§nr', then T'=Z, (m+n +
"l)-r=m(m+n+l)-Z ' r=m(m+n+1)-T. This formula
saves the labor of reranking when tables, such as White's, require
the smaller of the two T values.

i, Sources: 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
18, 19, 20, 2T, 22, 23, 24, 25, 29, 30, 31, 32, 33, 35, 36, 37, 44,
45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
69, 70, 71, 72, 73, 74.
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6. The Mann Whitney Test

a. Rationale. Let a sample of n observations, designated
as Xs, and a sampIe of m observations, identified as Ys, be taken
from the same continuously distributed population. Now arrange
the m + n observations in order of increasing size irrespective of
sample. Then replace each ordered observation with an X or a Y
depending on the sample from which it originally came., The result
will be a pattern of n X's and m Y's intermixed.

If these m + n units were all different, there would be (m + n)!
distinguishable patterns. However, for each actually distinguishable
pattern there aren! permutations of Xs with each other which do not
change the pattern, and for each of these permutations there are m.
permutations of Y's with each other which do not change the pattern,

m ! m
{5 n|). ( i n) distinguishable patterns of
m! n! m

Therefore, there are
n Xs and m Ys., If the two samples are drawn from the same popula-
tion each of these patterns is equally likely., However, if they come
from different populations, the patterns should be unequally likely, and
if the populations differ in location only, one would anticipate patterns
in which Xs tended to cluster at one end, Ys at the other,

The test statistic, U, therefore is the number of times a
Y precedes an X, Thus, U is the number of Ys preceding the small-
est X, plus the number of Ys preceding the next smallest X (and there-
fore including all of the Ys counted in the first case), etc., until the
number of Ys preceding each X are counted and summed for all Xs.
The probability of U, when the null hypothesis is true, is simply the

proportion of the (rn iy n)

possible patterns which result in Us as
extreme or more extreme than that obtained.

m+n
b. Null Hypothesis, Each of the ( 5 ) patterns of Xs and

Ys, representing their observations arranged in order of increasing
algebraic magnitude, is equally likely., A sufficient condition for the
validity of the null hypothesis is that the two samples were drawn ran-
domly and independently from identical continuously distributed
populations.

c. Assumptions: See 5, The Wilcoxon Test: Unmatched Data.

d. Treatment of Ties., If Xs are tied with Ys, and m and
n are small enough for the tables to apply, it is suggested that the
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Wilcoxon form of the test be used and that ties be treated as outlined
in 5, The Wilcoxon Test: Unmatched Data.

If m and n are large enough to justify using the normal ap-
proximation to the distribution of U, a correction for ties can be
applied in calculating the critical ratio. See '""Tables!''.

e. Efficiency. See 5, The Wilcoxon Test: Unmatched Data.
Efficiency, power, consistency and bias are same as for the Wilcoxon
test for unmatched data.

f. Application. Let the observations from the example of
application of the Wilcoxon test be arranged in order of increasing
magnitude, with the letter in parentheses indicating the sample from
which an observation came. The result is -14(A), -12(A), -12(A),
-10(A), -3(B), -2(A), 2(A), 5(B), 7(B), 8(B), 9(B), 15(B), 24(B). The
number of times a B precedes an A is 2. A value of U as small or
smaller than this could be obtained from the following arrangements:

A AAAAABBDBDBDBIBB U=0

A AAAABADBDBBIBDBIB U

"
=

A AAAABDBABUBDBBDB U=2
A AAABAABUBBIDBDBB U=2
Since there are (627) or 1716 possible arrangements, the significance

level for a one-tailed test of the hypothesis that the A's either equal

or exceed the B's is 4/1716. For a two-tailed test, the mirror images
of the four patterns shown above must be considered as causing large
U's which are correspondingly '"as extreme!''. These are the patterns
in which a B follows an A zero, 1, 2, and 2 times, or, to return to the
definition of U, the ways in which a B precedes an A 42, 41, 40 and 40
times. Since there are eight values of U as extreme as that obtained,
the values being 0, 1, 2, 2, 40, 40, 41, 42, the significance level for
a two-tailed test is 8/1716.

g. Discussion. Let there be n xs and m ys arranged in
order of increasing magnitude. Let xi be the ith x in order of in-
creasing magnitude and the rth measurement, i.e., the rth among the
xs and ys combined, in order of increasing magnitude, and let u; be
the number of ys preceding X;. Finally let T be the Wilcoxon rank sum
of the x ranks and let U be the Mann-Whitney statistic, the number
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of times a y precedes an x. Then r is the Wilcoxon rank of X, and

=i _ _ s . _ 4+l n _ n+l
r—1+ui. AndT—Z)r—ié1 (1+ui)—n(T) +12;1 ui-n(T) + U.

The sum of all ranks is simply the number of ranks times

the average rank, or (m+n) (—H-l—izril); therefore, T', the rank sum

of the y ranks is (m +n) (%n-l-l)_,r. So T'= (m+n)(m+n+1)

-n (n—trl-) - U which reduces to T' = mn +£—(ZM

Thus the Mann-Whitney test statistic U, for any given values
of m and n, differs from the Wilcoxon test statistic, T, only by a
constant. Otherwise stated, the two statistics are mathematically
equivalent. The formulas relating T to U may be useful in saving
labor when tables are in terms of U, since it is generally easier to
obtain T than U (which involves an excessive amount of counting). The
Mann-Whitney statistic is also related to Kendall's S for rank corre-
lation.

Many of the points discussed in connection with Fisher's
Method of Randomization and the Wilcoxon test are also relevant to
the Mann-Whitney statistic. They will not be recapitulated; there-
fore, see the "Discussion' section of the foregoing tests named,

h. Tables. 1, 35, 46 (See also 18 and 36)., Tables can also
be found, reproduced, in some of the sources listed in the Introduction.

The number of ys which either precede or follow a given
x is m, the size of the y sample; and since there are n xs, the
number of ys either preceding or following an x is nm. Therefore
if U is the number of times a y precedes an x, then mn- U is the
number of times a y follows an x. This, however, is also the
number of times an x precedes a y., Therefore, the count need
be made only once even though most tables list only the smaller of
the two values U and U' = mn - U,

When m and n are large and are too large for the exact
tables to apply, approximate probabilities may be obtained by re-
ferring a critical ratio to normal tables. If there are no ties, the
test statistic U comes from a populationof U's whose mean is U = _rr21£
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and whose variance is L (n122+n+ 1) s Ties do not affect the

mean, but they decrease the variance (22). Let t, be the number

of tied observations in the ith group of tied observations, and let
there be k groups. Then when there are ties the variance becomes

Kk . 3
Zioy (& -t
Tm+n)(m+n-1)

2 mn
O'u --1-2—[m+n+1-

| B Probabilities may

- 1T

u

to

therefore be obtained by referring the critical ratio

normal tables.

i. Sources. See 5, The Wilcoxon Test: Unmatched Data
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CHAPTER VI

TESTS BASED ON THE METHOD OF RANDOMIZATION II

Fisher's method can be applied to almost any type of statistic
or sample information. In the present chapter it is extended to
testing for correlation, the most significant such application being
that in which the method is used to obtain exact tables for Spearman's
rank difference correlation coefficient.
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1. Pitman's Correlation Test

a. Rationale. Suppose that an x observation and a y observa-
tion have been made on each of n units or individuals and that Pearson's
product moment correlation coefficient, r, has been calculated from
the data in the usual way. Now suppose that the correlation coefficient
is calculated for every possible set of paired xs and ys, using the same
data but permitting any given x observation to be paired with any of the
n y observations, not just the one recorded for the same unit. There
are n ways of assigning a y to x;, n-1 ways of assigning a y to X, after

making the first assignment, etc., so that there are in all n! ways of
re-pairing the xs and ys. Let N be the number of these ways which
result in a correlation coefficient as large or larger than that obtained
for the data as recorded. If there is no correlation between x and y
in the sampled population, then each of the n! correlation coefficients
is equally likely and the a priori probability of obtaining a correlation
coefficient as great or greater than that actually obtained is N/n!

b. Null Hypothesis. Each of the n! sets of pairs of xs and
ys is equally likely to have been recorded. This will be the case if

all assumptions are true and if there is no correlation between x
and vy.

c. Assumptions, Sampling is random, pairs of observations
are independent and the sampled populations are continuously distributed
so that there are no tied observations.

d. Treatment of Ties. If any xs or ys are tied there will be
less than n! distinguishable sets of pairs., However, if ties are due
to imprecision of measurement, the tied observations may be treated
as if distinguishable, by regarding one tied observation as ''green',
another as '"'yellow'", a third as ''red', etc., in permuting data, so
that n! remains the proper denominator for the probability fraction.
To minimize error, half of the sets of pairs which, because of ties,
yield exactly the same r as the actually recorded data may be counted
as among the N ""as extreme or more extreme' sets. For a conser-
vative test, N should include all of them.

e. Efficiency. No information available.
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f. Application. Let the obtained data be represented as

follows:
Sum Mean
X 1 2 5 8 14 30 6
y 2 1 7 10 15 35 7
xy 2 2 35 80 210 ) xy =329

). - %)y - §)

S - 2Py - 97

whose numerator is

The expression for r is

ny - iZy - §Zx+ Z;{;r or ny - nXy - nyx + n Xy or simply

ny - nxy and whose denominator remains constant for every set

of re-paired xs and ys. The N "most extreme' rs therefore will be
those which have the N '"most extreme' numerators. The numerator
for the observed data is 329 - 210 or 119. This value can be exceeded
in only one way: by switching the two leftmost ys. Therefore for a
one-tailed test of the null hypothesis that there is either zero or nega-
tive correlation, cc = 2/5! = 2/120., For a two-tailed test N must
include those sets of pairs for which the numerator of r is -119 or
less, i.e., those sets for which ) xy< 210 - 119 = 91, In this
particular case there are no such sets, so the significance level

for a two-tailed test is stilloc = 2/120,

g. Discussion, In common with other tests based on Fisher's
Method of Randomization and using original continuously distributed,
measurements, this test is a conditional one. Strictly speaking stat-
istical inference can be extended only to a 'population' consisting of
the xs and ys actually recorded, not to the larger population from
which they were drawn, To the extent that the obtained sample is
representative or typical of the larger population, it would be legi-

timate to extend inference to the larger population. However, such
representativeness is not tested by the test and remains an unproven
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assumption for which there is generally little or no evidence. Like-
wise, because the rejection region varies with the sample, it is im-
possible to construct generally useful tables of probabilities for the
test.

h. Tables. There are no tables; probabilities must be
calculated for each individual case.

i. Sources. 23, See also 1.

2. The Rank Difference Correlation Coefficient

a. Rationale. If an x measurement and a y measurement
have been taken on each of n units or individuals, the Pearson product
moment correlation coefficient is

Yix - %) {y - §)
r = . However, if the measurements are con-

V e - 2% iy - 97

tinuously distributed so that there are no ties, and if each measure-
ment is replaced by its rank among measurements of the same type,

6Zd2
3

n -n

the formula for Pearson's r reduces tor = 1 - where d

is the difference between ranks of measurements taken on the same
unit (13). The latter formula is the expression for Spearman's rank
difference correlation coefficient, p. Therefore if original measure-
ments are replaced by their ranks, Pitman's test, applying Fisher's
Method of Randomization to the product moment correlation coefficient,
and the application of Fisher's Method of Randomization to Spearman's
rank difference correlation coefficient are mathematically equivalent,
By using ranks, however, instead of original measurements, the test
is no longer conditional upon the particular measurements recorded,
the sample space and the rejection region for the test statistic are

the same from one test to another for the same sample size n, and
significance levels may profitably be tabled.

Therefore, let each x measurement be replaced by its rank
among the xs, and each y measurement by its rank among the ys.
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There are n! ways of obtaining a sample of n pairs of ranks, each
pair containing an x rank and a y rank, If there is no correlation
between x and y, each of these n! samples was equally likely, on an
a priori basis, to have been the obtained sample. Therefore, if N
of these n! samples yield a rank difference correlation coefficient
as extreme or more extreme than that calculated for the actually ob-
tained sample, the probability for that of the obtained sample is
N/n! ’

b. Null Hypothesis. Each of the n! sets of pairs of xs and
ys is equally likely to have been recorded. This will be the case if
all assumptions are true and if there is no correlation between x
and vy.

c. Assumptions., Sampling is random, pairs of observations
are independent, and the sampled populations are either continuously
distributed or are natural rank populations consisting of the unrepeated
integers from 1 to n so that there are no tied ranks,

d. Treatment of Ties. When the same value is recorded
for more than one x observation or for more than one y observation,
the problem of ties is raised. It has generally been recommended
that such ties be given the midrank for the tied group in which they
appear. However, Thornton (31) has pointed out when n "is very
small one or more pairs of tie rankings will change very greatly the

frequencies with which various values of Zdz and p can be obtained',

and has questioned "whether tie rankings tend to increase the probability
of positive coefficients and to decrease the probability of negative coef-
ficients.!'" A perfect positive correlation, +1, is obtained when

de = 0. For an n of 3, this can occur in the following ways if ties

are assigned the midrank,

xp 1 2 31 11/2 112 2 2 21 21/2 2172 ]
iyl @ 3 Uiz 1i/z 3§2 2 2§ T 2l/z 21/e

A perfect negative correlation, -1, is obtained when Zdz =

1'5&



For an n of 3, the required sum of squared differences, 8, can occur
only for the case of no ties:

a2 4 0 4

If any two of the three xs or of the three ys are tied, the corresponding
d%s will sum to less than 4 and the total sum of d%s will be less than 8.

Such considerations suggest that the most reasonable treat-
ment of ties is to distribute the tied-for ranks among the tied observa-
tions in each group in that way which is least conducive to rejection
of the null hypothesis., The limits of ''tie error' can be obtained by
calculating probabilities under both the above method and the method
by which tied-for ranks are assigned to tied observations in the way
most conducive to rejection,

e. Efficiency, Spearmaa's rank difference corzrelation
coefficient has an asymptotic estimate efficiency of 9/ 7”° or . 912 as
an estimator of Fearson's product moment correlation coefficient
when the latter is zero and when both coefficients are obtained from
large samples from a bivariate normal population (13). Under the
conditions outlined above, therefore, the rank difference test for
correlation has an asymptotic relative efficiency of .912 relative
to the parametric test for correlation (27, 26).

The test has been shown by Hoeffding (10, 11) to be asymp-
totically biassed for certain alternatives.,

f. Application. Using the same data used in the example
of application of Pitman's correlation test we have:
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x rank 1 2 3 4 . 5

y rank 2 1 3 4 5

d -1 +1 0 0 0
a2 1 1 0 0 0 Jac =k
6 Zdz 6 x 2
The value of p for the obtained sample isp =1 - =1-
. 125-5
= .90 which can be exceeded in only one way — by switching the y

ranks 1 and 2 so as to obtain a perfect positive correlation. It

can be equalled, however, by any one of the following four ways, the
x ranks being listed only once since re-pairing can be accomplished

by manipulating only the ys: .
X L 2 3 4 5
y 7 | 3 4 5
y 1 3 2 4 5
y 1 2 4 3 5
y 1 Z 3 5 4

Therefore for a one-tailed test of the hypothesis that correlation is

; : 4 + 1 5 .
either zero or negative,c= N/n! = —5r— = osre For a two-tailed

test, N must include all sets of re-paired ranks which yield a p of
-.90 or a larger negative magnitude. They are listed as follows:
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% 1 2 3 4 51 Ta% « 40

5
y 5 4 3 2 1) p=-1
x 1 2 3 4 5
y 4 5 3 2 1

2

y 5 3 4 2 T )a“ = 38
v 5 4 2 3 1 p=-.90
y 5 4 3 1 2

It is clear therefore that the test statistic is symmetrically distributed
so that the significance level for a two-tailed test is just twice that for
a one-tailed test, i,e., « = N/u! =10/120, In actual application, of
course, the significance levels would be obtained directly from tables
rather than by enumerating the number of ways which constitute the
numerator of the probability fraction,

g. Discussion, It has been forcefully pointed out (22 and
editorial note accompanying 30) in the past that correlation between
sets of ranked variate values is not the same thing as correlation
between sets of original variate measurements. Recent results by
Stuart, however, indicate that when samples are of moderate or large
size, conclusions as to correlation among original measurements may
reasonably be drawn from tests of correlation which use only the ranks.
Stuart (27, see also 15 pp. 124-125) found that when sample size in-
creased from 25 to infinity the correlation between original measure-
ments and their ranks increased from .94 to .98, for samples from
normally distributed populations, and from .96 to 1,00 for samples
from uniformly distributed populations with finite range.

There are, at present, two outstanding rank tests for corre-
lation, the present test and Kendall's rank order test of correlation.
The two tests are not mathematically equivalent: 'it is possible to
have populations in which T =0 andp = 1/2 or -1/2" (4). However,
when applied to samples from bivariate normal populations in which
x and y are uncorrelated, Spearman's p and Kendall's T are highly
correlated. For such cases, the product moment correlation coef-
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ficient for correlation betweenp and Tis .980 whenn =5, .990 when
n = 20, and 1.00 when n = o (15 p. 80, 6, 5).

When applied to very large samples from a bivariate normal
population in which the population product moment correlation between
x and y is T ,the product moment correlation between Spearman's p
and Kendall's T is 1 when = 0, .9996 when T = .2, .9981 when
T=.4 and .9843 when % = _8, '"though it tends to zero as T approaches
unity™ (15, p. 131).

The rank difference correlation test has the advantage that it
can be performed very quickly, Also, because rank differences are
squared, the test is particularly desirable when one wishes to weight
large discrepancies between ranked xs and ys more heavily than small
ones. In most other respects, however, the test appears to be in-
ferior to Kendall's rank order correlation test (15, 16, 18).

Both the distribution of p and that of T approach the normal
distribution as n increases (13, 10, 5)., However, the distribution
of p is inadequately approximated by the normal distributioa when
samples are of a size just too large for the exact tables, which ex-
tend fromn = 2ton = 10, to be applicable. The '"fit!" between the
distribution of p and its normal approximation is poor at the most
important region, the tails, when n is small, e.g. whenn = 11,
Furthermore, at these small sample sizes the distribution of p is
very jagged ordinatewise, presenting a sawtoothed appearance (15, 16).
By contrast, the distribution of Kendall's 7 approaches the normal
form much more rapidly so that the normal approximation is reasonably
good at those sample sizes at which it must be used to obtain prob-
abilities. At these sample sizes the distribution of 7 is such that
the curve descends monotonically on either side of its mode, the en-
tire curve including its tails giving the appearance of a very nearly
normal distribution (15).

A modification of the rank difference correlation test has been
considered by Daniels (4) as a test for trend. It has an asymptotic
relative efficiency of (3/7) or .98, relative to the regression coef-
ficient test, b, as a test of randomness against normal regression al-
ternatives. When applied in these circumstances, it is equal in ef-
ficiency to Mann's T test, and generally superior to other distribution-
free tests of randomness (29, 26). See Table I of the Introduction.
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h. Tables. Exact probabilities have been tabled for 2 Sn g 7
by Olds (20), for 2 < n < 8 by Kendall, Kendall and Smith (16), for
= 9 and n = 10 by David, Kendall and Stuart (6), and for 4 Sn <10
by Kendall (15). Approximate probabilities have been tabled for
8 <n < 30 by Olds (20, 21) using a Type II curve for 8 <n £ 10 and
using the normal approximation for 11 Sn < 30. All of these tables

are entered with Zdz rather than p. Thornton (31) has "translated"
Olds' tables of probabilities for J'd° into probabilities for p. Olds!'

tables have been criticized as containing distortions when sample
sizes are in the region of n = 11 (31),

If there is no correlation between ranked xs and ys, then as
n increases the sampling distribution of p approaches a normal distri-

1
n-1

bution whose mean is zero and whose variance is . Likewise,

the sampling distribution of Zdz approaches a normal distribution

whose mean is n3 2 and whose variance is (n36- i )2 nl- T -
Zdz _ n3 -n
Therefore, for large samples, —Ff __ or 5 6 may be
n -1 n -n
n-1

treated as normal deviates with zero mean and unit variance, and prob-
abilities may be obtained by referring these critical ratios to normal
tables, Various corrections to these formulae are available which
"correct' for the effect of ties (12, 15, 30, 36) or for discontinuity
(See 15, pp. 34-35, 38-41, 59-60). However, because of the biassing
effect produced by ties, the most reasonable procedure would appear

to be the most conservative one. Following this philosophy tied
observations would be assigned the tied-for ranks least conducive to
rejection of the null hypothesis, Probabilities would then be obtained
using formulae "uncorrected' for ties. When there are no ties, the

interval between successive values of Zdz is 2, so the appropriate
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correction for continuity consists of subtracting or adding 1 to the
numerator of the critical ratio. If the numerator is positive, it
should be decreased by 1, if negative, increased by 1.

i. Sources. =2-18, 20-22, 25-3], 35, 36.

) Test for Serial Correlation

Wald and Wolfowitz (32) have considered the Method of
Randomization as a means of testing the significance of the serial
correlation coefficient,

n
% 2
" () %)
N i=1
b R K =
X i “i4h N
B = izl There are n! permututations
n
2
n o A )
L XL - i
Je=. n

of the order in which the Xs were actually recorded, and for all

n n
permutations Z x5 (and ;J Xf’) will be the same. Therefore, the
i=1 i=1
‘ﬂ
statistic used is simply Rh =/, Xi Xi+h’ the subscript i indicating
i=1

the itP X in order of appearance and h indicating the ''lag' or indi-

cating the period of a suspected cyclical fluctuation. When ith >

5, XK. is used instead of X, ., . The value of R, is calculated,
ith-n i+h h

in effect, for each of the n! possible permutations of order (which are
equally probable if the null hypothesis, that the As are independent
observations from the same population, and therefore appear in ran-
dom order, is true). The N ''values which constitute the critical reginn
will depend in each particular problem on the possible alternatives to
randomness, " and so will the value of h. The significance level is
N/n!, and the null hypothesis is rejected if the actually obtained

value of Rh is among the N values of Rh which constitute the critical
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region. It is assumed that the Xs come from a continuously distrib-
uted population,

The value Ry is asymptotically normally distributed (under
mild qualifications) and, if h is prime to n, the distribution of
n n
Rh ='21 Xi Xi+h is the same as the distribution of R; = .}_11 Ky Kapqs
1= R
Therefore, by taking h and n so that h is prime to n, the significance
of Ry can be tested, for large samples, by referring the critical ratio

- R
1
to normal tables. Unfortunately, considerable calculation

a
Ry

is required to obtain the mean and variance of Rl'

The authors have suggested that the test might be improved
if the Xs were replaced by their ranks. Noether (19) finds that both
tests, i.e., the one already outlined and the one in which Xs are re-
placed by their ranks, are consistent against certain alternatives of
cyclical trend where h is the length of cycle. He finds that either test
may have the greater asymptotic relative efficiency with respect to the
other, depending upon the distribution of the population of Xs, The
asymptotic relative efficiency of the Rh test relative to Mann's T test
was found by Noether to be zero under certain stated conditions, It
also has A,R.E. of zero relative to the best parametric test based on
the regression coefficient (29, 26).
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CHAPTER VI

TESTS BASED UPON INVERSIONS

Correlation can be tested by arranging units in increasing order
of one variable and testing the resulting order of the other variable
for randomness. If there are n units and there is no correlation,
the resulting sequence of observations on the second variable is
equally likely to be any of the n! possible permutations of the obser-
vations. However, if the two variables are linearly correlated, the
observations on the second variable should tend to form an increasing
or decreasing sequence, and the number of inversions in this sequence
should tend to be extreme. By using the number of inversions as test
statistic and applying essentially Fisher'!s Method of Randomization,
an exact test for correlation can be formed and its probabilities
tabled. By taking 'time' as the first variable, the test can be made
a test for trend.
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1. The Distribution of Inversions

Let the integers from 1 to n be arranged in some order, such
as the following: 3 5 1 4 2 6., When a given number is followed
by a smaller number an inversion exists. In the sequence of integers
just presented, there are six inversions: 3 is followed by two smaller
numbers 1 and 2; 5 is followed by three smaller numbers 1, 4 and 2;
and 4 is followed by the smaller number 2.

If the order in which the n integers are to be arranged is
determined by a random process, then each of the n! permutations
of the n integers is equally probable. And the a priori probability
of obtaining a random sequence with exactly I inversions is simply
the number of permutations containing exactly I inversions divided by
n!, the number of permutations possible.

Besides I, two additional measures directly related to inver-
sions will be encountered. For a single permutation the maximum
number of inversions is simply the number of pairs of integers which

are compared, (121) or % (n-1). Therefore the number of times an
integer is followed by a larger integer in the sequence is the compli-
ment of I and is equal to % (n-1) - 1. This measure will be designated

as T. The other measure is S which is equal to T - I. The following
table gives the distributions of I, T and S for n = 4,

n(n-1)(2n+5),
T

and as n approaches infinity it approaches the normal distribution (8,
40, 54). Therefore, for large n the critical ratio

The distribution of I has mean % (n-1) and variance

I-%(n—l)

may be treated as a normal deviate.

~ / n(n-1)(2n+5)
12

165




TABLE V

DISTRIBUTION OF INVERSIONS FOR n = 4

Permutation

I

Permutation
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Probability

Frequency

Probability
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2. Kendall's Rank Order Correlation Test

a. Rationale. Suppose that an x measurement and a y
measurement have been taken on each of n units and that tied xs and

tied ys are both impossible. If the units are arranged from left
to right in order of increasing x scores, the sequence of ys will
be random if x and y are uncorrelated. However, if x and y are

linearly correlated, the sequence of ys will tend to increase or de-
crease systematically, and the number of inversions among the ys
will tend to be small or large respectively, Therefore the rumber
of inversions among the ys can be used to test the null hypothesis
that x and y are randomly associated against the alternative that
they are linearly correlated.

Let the xs be ranked from 1 to n and the ys also, and let the
units be arranged in increasing order of x rank. Then if T is the
number of times a y rank is followed by a larger y rank and I is the
number of times a y rank is followed by a smaller y rank, Kendall's

test statisticis S=T - 1. Since T = -121- (n-1) - I, S= % (n-1) - 21
or=2T - %— (n-1), so S, I and T are mathematically equivalent test
statistics (when there are no tied scores).

The xs need not actually be arranged in order of increasing
magnitude in order to calculate S. It is obvious from the foregoing

that S is simply the number of the (121) pairs of units inwhich the x and

y scores of one member deviate in the same direction from their
respective x and y counterparts in the other member minus the number
of pairs in which they deviate in opposite directions. Therefore, let
the units be arranged in any arbitrary order and let subscripts indi-
cate position in this order, unit j being any unit to the right of unit i,
Let aij be 2 dummy score which is +1 if xj is greater than X, and -1

1f xJ. is less than X, . Similarly bij is +1 if yJ. > i and -1 if Yj < Yie
Finally, let Cij = aij bij so Cij is +1 if (xi - xJ.) (yi -yJ.) is positive,
. o b % = fm 8
i @uy 1f STEHET X < xj and Y; yj or x, xj and Y; yj, and is -1 if
the product is negative. Then S is the sum of the Cijs taken over

all values of j>i and all values of i from 1 to n.
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b. Null Hypothesis. Each of the n! possible permutations
of rank order of the ys was equally likely, before sampling, to be
found when the units are arranged in order of increasing rank on
the x measurement. A sufficient condition for the validity of the
null hypothesis is that x and y are uncorrelated and all assump-
tions are true.

c. Assumptions. The units have been drawn independently
and at random from a population in which each variable, x and vy,
is either continuously distributed or exists naturally in the form
of untied ranks.

d. Treatment of Ties. If ties are due to imprecision of
measurement, the safest rule is probably to distribute the tied-for
ranks to the tied measurements in the way least conducive to rejec-
tion of the null hypothesis. The limits of tie-error can be obtained
by comparing the probability obtained in this manner with that ob-
tained by taking the opposite course. This rule may be safely fol-
lowed regardless of whether exact or normal tables are used and
without recourse to extensive corrections in formulae or to modi-
fications of procedure. An alternative method is to give observa-
tions in each group of tied values the average of the ranks the mem-
bers of the group would have if distinguishable. @ The midrank method,
however, requires considerable qualification as will be shown in the
paragraphs to follow.

When ties are assigned the midrank and probabilities are
obtained from tables constructed upon the assumption that ties are
impossible, the obtained probabilities are distorted; however, the
statistic S is a far safer one than T or I. Consider first the case
where ties are due to imprecision of measurement. If the ys are
arranged in order of increasing x-rank and the last three of four
y-ranks are tied, the y-ranks arel 3 3 3, soT =3, I - 0 and
S = 3. The true ranking of the ys could be any of the following
permutations:
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Permutation AE I S

I @ 3 4 6 0 6
1 2 4 3 5 1 4
1 3 2 4 5 ) 4
1 3 4 2 4 2 2
1 4 2 3 4 2 2
1 4 3 2 3 3 0

The average T is 4 1/2 but the value of T obtained by the midrank
method lies at one end of the range of possible true values. The situa-
tion for I is analogous. However, the average S is precisely the
value obtained by using the midrank. (The average S, however, is
an odd number, whereas for n = 4 when there are no ties S assumes
only even values. The probability tables therefore will have no
entry for S = 3 and another source of inexactitude will have arisen.)

Consider now the case where ties represent intrinsic
equality rather than imprecision of measurement. In this event,
the proper tables are those based upon the frequency distribution
of S given that certain ties exist, such as the tables prepared by
Sillitto (43). The appropriate tables, therefore, would be derived
by obtaining the frequency distributions of S when each ranking con-
tains specified numbers of ties of specified extents, obtaining each
such distribution by letting the y rankings assume every distinguish-
able permutation while the x ranking is held constant. The conven-
tional tables, derived from untied rankings, are not appropriate
and, if used in lieu of, or in the absence of, the proper tables, may
lead to gross errors in probabilities. The amount of error attend-
ant upon this procedure, however, is not the same for T, I and S.
These three statistics are mathematically equivalent when ties are

impossible, but not otherwise. When ties exist the maximum
value T and I can assume is reduced, but the minimum value is
the same as if ties were impossible. Since S is the difference be-

tween T and I, and since T is inversely related to I, S can assume
neither the same maximum nor the same minimum as it could if
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ties were absent. The result is that the distributions of S when
there are ties tend to maintain symmetry about the same point as

that about which the distribution of S is symmetrical when ties are
impossible. And since it is the extreme 'tabled' values which be-
come impossible when there are ties, the true probability of the
central Ss tends to gain at the expense of the extremes. Therefore
the error of referring S to tables based on the assumption of no ties
is likely to be a decrease in the probability of rejection, and the error
will tend to be a '""conservative' one. Furthermore the error tends
to be no greater for a one-tailed than for a two-tailed test. The dis-
tributions of T and I when there are ties tend to occupy a region
closer to their minimal values than is the case when there are no
ties. This distribution may be quite skewed, and even if it is sym-
metrical, the point of symmetry is closer to the minimal value than
is the case when there are nc ties. The result is that the true prob-
ability of the smallest values of T or I tend to be much greater than
that obtained from tables based on no ties, thus spuriously increasing
the probability of rejection when the rejection region consists of the
smallest values. The situation is improved by using a two-tailed
test, but the error may still be great in the direction of spurious
rejection. The obvious conclusion is that, while there is no choice
between T, I and S when ties are impossible, S is a much safer test
statistic, although by no means free from error, when ties are present
either because of imprecision of measurement or because of intrinsic
equality.

If ties result from intrinsic equality between scores, the
tie is not an artifact of measurement, but represents a fundamental
discrepancy between the mathematical model and the situation it is |
intended to simulate. For such cases it is reasonable to alter the
mathematical model. Sillito (43) has followed essentially this pro-
cedure by obtaining the exact distribution of S when there are Po
groups of two tied scores and p3 groups of three tied scores in one
of the two rankings, the other ranking being tieless. He has tabled
the probability of S for all possible values of p, and p, (and for all
combinations thereof), from zero to the maximum number, for
3 <n <£10. These probabilities are conditional probabilities: they
state the probability of S given that one ranking is tieless and the other
contains P, groups of two tied ranks and P3 groups of three tied ranks.
When there are ties and they are assigned the midrank,the mean of S
remains zero, but its variance is altered. The formula for the var-
iance of S when there are ties in one or both rankings has been obtained
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TABLE VI

Conditional Frequency Distributions of T, I and S When n=4 and There
Are no Ties, One Tied Pair in One Ranking, Two Tied Pairs in
One Ranking, and One Tie of Three Ranks in One Ranking

Frequency Distributions of T, I and S if:

Value of Ties are Two Ranks Two Sets of Three Ranks
Statistic Impossible are Tied Two Ranks are Tied
are Tied
T 1 S T, Ior S T 1 S T 1 S T 1 S
0 6 -6 1 r 8 P i 2 E
r -5 ! R ‘ i |
i1 5 -4 3 ' 61 3 R 1 25 0
‘ -3 i 6 | % ? 2
2 4 -2 5 4 916 @2 1 1 i 24
-1 | i (g i § 2
3 3 0 6 i 9: 9 4 1, 14§ 2 77 2
! i T 2
. 4 2 2 | 5 i 6 : 9 ‘EENEE 2.0
3 | 6 i : [
5 1 4/ 3 37 6 ' 171 § 8
5 e — ,.
6 0 6 1 1 i BEE L ! ¢ BN
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TABLE VII

Cumulative Probability Distributions for T, I and S When n = 4 and
There Are no Ties, One Tied Pair in One Ranking, Two Tied Pairs
in One Ranking, and One Tie of Three Ranks in One Ranking

True Distribution if

"Tabled"
Distribution: Two Sets of

Value of Ties are Two Ranks Two Ranks Three Ranks
Statistic Impossible are Tied are Tied are Tied
T I S T, Ior S T I S i s I S T I S
- i : 4 i L]
0 6 -6 .04 i .08 o U7 i @B |

-5 1] .08 i
1 5 -4 NE; T .25 .08 .33 173 .50

-3 i . 25)! i . 25
2 4 -2 .38 | 50§ .25 O || L0 B3 .15

-1 f .50 | .50
3 3 0 .63 v .75 .50 . .83] .33[.67]1.00] .25

1 | . 75!; i 5
4 2 2 | . 83 L .92] .75 i1,00( .67] .83 .50

3 } .92l i k.00
5 1 4 .96 T1,00] .92 ; . 83[1.00 .75

5 i 1.00 i
6 0 6 J 1.00 %L '1.00 4 1.00 JL 1.004
3+3 3143 16 .08 08| .08 RyI Ty .25] .25

15 A7 ‘
32 312 +4 33 33| .33 233 .69 .33n4_.50 .50

3 i .50 s 50
3+1 3+1 £2 .75 .75] .75 .83 .83] .67 75| .75

4 1. 00 1. 00
3 3 0 1.00 1.00 1,00 1.0011.00]1. 00fl 1.00] 1. 00

172




TABLE VIII

Conditional Frequency Distributions of T, I and S When n = 4 and There

Are no Ties in Either Ranking and When n = 4 and There Are Three Tied

Ranks in One Ranking and Either Two Tied Ranks, Two Sets of Two Tied
Ranks, or Three Tied Ranks in the Other Ranking

Freguencv Distribution of T, I and S if

/ One Ranking Contains Three Tied Ranks \
The Other:
[ %
Value of Ties are Two Sets of Three

Statistic Impossible Two Tied Ranks Two Tied Ranks Tied Ranks

[ I S T, Tor S T I S T I S T I S
0 6 -6 1] 1 24 T 6 8 I

5 : j |
1 5 -4 . 3 f 18 l I 6

-5 | 12 ! ; 2
2 4 -2 5 18 12 | 6 6

N 6 ; 6
3 3 0! 6 ' 1212 |12 ] z2 {2

1 6 6
4 2 2 5 g 18 {12 6 | 6

5 12 2
5 1 4 | 3 18 6

5 i | L
6 0 6 | 1 1] 24 } 6 8
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TABLE IX

Cumulative Probability Distributions for T, I and S When n = 4 and
There Are No Ties in Either Ranking and when n = 4 and There Are
Three Tied Ranks in One Ranking and Either Two Tied Ranks, Two
Sets of Two Tied Ranks, or Three Tied Ranks in the Other Ranking

True Distribution if One Ranking Contains

"Tabled" Three Tied Ranks and the Other Ranking Contains:
Distribution:

Value of Ties are Two Tied Two Sets of Three Tied
Statistic Impossible Ranks Two Tied Ranks Ranks
T 1 S T, IorS T 1 S BT I S T 1 S
0 6 -6 | .04 .33 : .50, | .50 7

=5 4 0 L
1 5 -4 | R .58 -‘ : ; .88

-3 ] f : ] " ‘ .13
2 4 -2 .38 | .83 .33 11,00 .50

-1 ! LL42 : 2 1 .50
3.3 O .63 i 1.00; 07,58 1 i | | 1. 00F 13

1 | ‘ .67 ; | . 88
4 2 2 .83 .42 .83 i .501. 00

3 | 1. 00 1.00
5 1 4 .96 <67 i .50

5 !
6 0 6 1,00 1. 00 i 1. 00 | 1,00
343 343 46 | .08 .33 .33 i .50 .50 .50 .50

£5 | ;
342 3+2 14 e .58 .58 i .88 .88

53 3% Y s 25
34l 34] 2 .75 .83 .83 .67 1,001001L 00 :

4] | .83 | 1. 00,
3 3 0 [ 1,00 f 1.,00100100 " It 1,00 1 00
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(23, 27, 43, 56. See also 52 for variance of T). Therefore when
samples are large and ties are given the midrank, the significance
of S can be obtained by referring the critical ratio, based upon the
"corrected'" variance, to normal tables. Again, however, the
probability obtained is conditional upon the existence, in the popu-
lation, (either the population of original scores or the correspond-
ing population of measurements) of ties in precisely the number
and extent implied by the corrected variance formula, e.g., in
the same proportionate number and extent as exists in the obtained
samples. Two further disadvantages are that the corrected var-
iance formula is a long one and, when a critical ratio based upon
it is referred to normal tables, the correction for continuity de-
pends upon which of several tie situations exists and may not be
precisely determinable.

When one takes a ranking containing ties, resolves the
ties in all possible ways and calculates S for each way, the average
of these Ss is the same as the S obtained by the midrank methad.
However, if, following Muhsam (36), one takes an untied ranking
or pair of rankings, introduces all possible ties, calculates S
for each case, and obtains the average S it is extremely unlikely
to be the same as the S for the untied rankings, and the distribu-
tion of S's is likely to be quite skewed. In the former case one is
dealing with a single conditional distribution since the number,
extent and location of the tied groups is specified and fixed. In
this case, if the null hypothesis is true, each of the untied rankings
which might have been the true ranking is equally likely to have been
obtained as an untied ranking and therefore should be equally likely
to be the true 'parent' of the tied ranking. In the latter case, how-
ever, the situation is quite different. One is dealing with a multi-
plicity of conditional distributions, e.g. in a ranking of four objects,
the distribution of S conditional upon the existence of one tie of two
rankings, the remaining two rankings being untied, or the distribu-
tion of S conditional upon the existence of one tie of four rankings,
etc. To calculate S for all distinguishable rankings under all pos-
sible tying situations and then take the average S by summing the
individual Ss and dividing by their total number is implicitly to
assume that each such component S is equally probable. This in
turn introduces the assumption that each tying condition's relative
probability is in proportion to the number of distinguishable rankings
which can be obtained from it. It can easily be shown that this
assumption is false. In the example just given, there are = dis-

21
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tinguishable permutations of four ranks of which a specified two are
tied, and these two can be any one of three pairs., So the total num-
ber of distinguishable permutations of four ranks, two of which are

1
tied is 3 (ézf,) or 36. However, all four ranks can be tied in only

one way, so the ratio of the number of distinguishable rankings
when there is one tie of two ranks to the number when there is one
tie of four ranks is 36, i.e., the ratio is a constant for the case
under consideration. Now let p be the unknown probability that a
rank is tied with the "truly" next higher rank and let =1 - p be
the probability that it is not. A single tie of two ranks can be ob-
tained in the following ways and with the following probabilities:
rank 1l is tied with rank 2 but rank 2 is not tied with rank 3 and rank

8 5 Bot Hed With Fank 4 (Preipg s Hamk L i nok tied with zank Z,

rank 2 is tied with rank 3, but rank 3 is not tied with rank 4 (Pr=p qz)',
r ank 1 is not tied with rank 2, rank 2 is not tied with rank 3, but rank

3 is tied with rank 4 (Pr = p qz). The probability of a single tie of

two ranks is therefore 3pq2. All four ranks can be tied in one way:
if rank 2 is tied with rank 1 and rank 3 with rank 2 and rank 4 with

rank 3 (Pr = p3) The r?tlo of the probability for a tie of two to
that of a tie of four is _Z" i.e., is a variable which depends upon

the unknown probabllltyq p, that a rank will be tied with the '"truly"
next higher rank., Thus the distribution of S when all possible ties
have been introduced in the rankings lacks meaning because the various
rankings, so obtained, are not all equally probable when the null hypo-
thesis is true.

e. Efficiency. When applied to sampies of infinite size
from bivariate normal populations in which x and y are uncorre-
lated, Kendall's tau is perfectly correlated with Spearman's rho
(5, 9, 23). Therefore the asymptotic estimate efficiency of 9/7

r .912 for rho as an estimator of Pearson's product moment cor-
relation coefficient, when both coefficients are obtained from large
samples from a bivariate normal population, applies equally to
tau (47). Under the conditions stated, therefore, Kendall's rank
order test for correlation has an asymptotic relative efficiency of
. 912 relative to the parametric test for correlation (17, 32).

The test has been shown to be consistent under conditions

stated by Mann (29) and Terpstra (52). Conditions for its un-
biassedness have been given by Mann (29).
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f. Application. Designating units by letters, let the follow-
ing data represent the variate values of x and y on each unit:

UNIT A B C D E
x 177 41 39 150 99

Measures
y 84 4 7 53 16

Replacing variate values by their ranks, the data become:

UNIT A B & D E

x-rank 5 2 1 4 3
Measures

y-rank 5 1 2 4 3

One method of calculating S does not require putting one ranking
in the ''natural'' order, 1, 2, 3, etc. If there are ties in both rank-
ings and if ties are given the midrank this method should be used.

. For each of the (121) possible pairs of units, a +1 is scored if the

x and y of one unit deviate in the same direction from their respec-
tive counterparts of the other unit, i.e., if they are both higher or
both lower than their counterparts in the other unit, otherwise, if
the deviations are in opposite directions, a - 1 is scored. The sum

of the (121) plus or minus 1s is S. (If ties are given the midrank, the
pairs for which the x ranks, the y ranks, or both, are tied are given

a zero score.) For example, for the comparison involving units C
and E the x rank of unit E is greater than the x rank of unit C and

the y rank of unit E is also greater than the y rank of unit C. There-.
fore a score of +1 is recorded for this comparison. When unit C is
compared with unit B the x rank of B is the greater of the two x ranks
while its y rank is the lesser of the two, so a -1 is recorded. Of the
ten possible comparisons of pairs of units, nine result in a score of
+1 and one in a score of -1. So the algebraic sum S = +8,
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If none of the x ranks are tied, the units may be arranged
in order of increasing x rank thus simplifying the calculation of S
for now for any pair of units a score of +1 results if the y rank of
the unit "higher' in the series is greater than the y rank of the lower
unit, and a score of -1 results in the opposite case. Rearranging
the units so that the x ranks form an increasing sequence, the data
appear as follows:

UNIT C B E D A

x-rank 1 2 3 4 5
Measures

y-rank 2 1 3 4 5

And the calculation of S is shown in the following table:

Number of larger Number of smaller
y rank y ranks following y ranks following
2 3 1
1 3 0
3 2 0
4 1 0
Sum 9 1

S=9-1=+8

The five y ranks can be permuted in 5! or 120 ways of which the
following permutations result in an S as great or greater than +8:
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1 2 3 4 5 S= +10

2 1 3 4 5 S= + 8
1 3 2 4 5 S= + 8
1 2 4 3 5 S= + 8
1 2 3 > 4 S= + 8

Therefore for a one-tailed test of the null hypothesis that the x and y
ranks have either zero or negative correlation, the significance level

is « = 5/120. For a two-tailed test of the hypothesis of zero rank corre-
lation , the permutations yielding an S of - 8 or less must also be
considered. They are:

5 4 3 2 1 S= -10
5 4 3 1 2 S= -8
5 4 2 3 1 S= -8
5 3 4 2 1 S= -8
4 5 3 2 1 S= -8

So o = 10/120 for the two-tailed test.

In actual application, the significance levels would be obtained
from tables. Furthermore it is clear that the value of S can be ob-
tained directly from the variate values of x and y without first convert-
ing these values into ranks. Conversion into ranks has two advantages
however. It makes the counting process simpler and therefore reduces
the likelihood of computational error. And it serves as a reminder
that it is rank correlation which is being tested, not correlation among
variate values. (The test could be used for the latter purpose, but
only as a conditional test, i.e., its conclusions would be restricted
to the set of observations obtained in the sample and could not be ex-
tended to the sampled population. )
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g. Discussion. Kendall's rank order correlation test is
one of the most important distribution-free tests. It is equalled in
efficiency and excelled in speed of computation by Hotelling and
Pabst's rank difference correlation test based on Spearman's rho.
However, in most other respects it is the better test (23, 28, 34).
(For a comparison of the two tests see Chapter VI.) As in the
case of the test based on rho, a coefficient of correlation can be
calculated from the data used in Kendall's test. The maximum
value S can attain is simply the number of comparisons of pairs,

(121) or ;_1- (n-1). Kendall therefore defines S to be his

= (n-1)

coefficient of rank correlation, which he calls tau. Its value
ranges from -1 for perfect negative correlation to +1 for perfect
positive correlation, Tau is related to rho, not directly, but by

certain mathematical inequalities, e.g., -1< 3T -2p <1,
""When the sample is permuted in all possible ways!', Daniels (5)

2(n+1)
N 2n (2n+5)

finds the correlation between T and p to be

Kendall's statistic has many interesting properties, Moran
(33) has shown that S is directly related to the 'least number of inter-
changes of neighbors required to restore the permutation to the
normal order', i.e., the order 1, 2, 3,....,n-1, n., Ifiis the

least number of such interchanges required, then i:n(nﬁ-{)-_zs_ .

A number of statistical tests may be regarded as the form which would
be assumed by Kendall's test if it were modified to take account of
ties representing intrinsic equality, For example, the Mann-Whitney
test statistic U is the number of times an A-sample observation pre-
cedes a B-sample observation when the observations from both sam-
ples are arranged in order of increasing magnitude irrespective of
sample. U therefore may be regarded as T with increasing rank
order of magnitude for the combined sample as the x ranking and

with the y ranking consisting of a set of tied'" A's intermixed with

a set of 'tied'" B's. In this case, the 'ties" would be due to in-
trinsic equality, i.e., the 'tied ranks' would define a category
(sample A or sample B) and "rank!" would have no quantitative mean-
ing for the ys.

The conditional probability of T given that one ranking

contained two sets of ties, one of extent a, the other, b=n - a,
would therefore be identical to the probability of a U of the same
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value, U =T, when sample A contained a observations and sample B
contained b observations, no observations being tied. It should be
emphasized, however, that this conditional probability of T is obtain-
able from the U tables but not from the tables for T or S which are
derived under the assumption of no tied ranks. That is to say, the
proper tables for S, when there are ties, are those calculated from

the conditional distribution of S given that so many groups of so many
tied observations are present in the data, The situation is analogous
when probabilities are obtained from the normal approximation. In
that case the standard deviation used as the denominator of the criti-
cal ratio must be the square root of the conditional variance of S

given that certain ties have occurred. The formulae for the '"correct-
ed!" variance of S may become quite formidable as for instance in the
case that there are ties in both rankings. Therefore, the relationship
between Kendall's S '""when there are ties' and other tests is a some-
what contrived one which is interesting but not particularly useful in
most cases. Generally it will be more efficient and less confusing

to employ tests expressly designed for data classified into groups or
categories rather than to seek out the proper modification of the in-
versions test. This is especially true when samples are small since
the exact conditional distribution of S apparently has been tabled only

for the case where there are '"ties'" in one ranking and only then for
n < 10 (43).

Several tests have been developed which do not belong to the
category discussed above. Whitfield (55) has outlined a test for intra-
class correlation of ranked data and tabled its exact probabilities,
Ranks from 1 to n are assigned to the members of n/2 pairs of obser-
vations, The pairs are then arranged in order of the lowest rank in
each pair, i.e, the lowest rank among the remaining observations
not yet ordered. Kendall's S is then calculated in the usual manner
except that no observation is compared with its paired member (but
is compared with all n-2 other observations). S max is therefore

r21—(1‘1-2) and, since S min is zero,theaverage Sis %(n—Z). Defining his

T
test statistic as S = S- 2\1 2) , Whitfield tables its probabilities for
4
3
6 <n <20, He finds its variance to be i so that large sample

probabilities can be obtained by referring the critical ratio to normal
tables. Moran (31) has outlined a curvilinear ranking test in which
the integer 1 is moved to the nearest end of the range of ranks, then
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the integer 2 to the nearest end of the range of ranks 2 to n, etc.,
until all integers have been so treated. The test statistic is the
leasi number of interchanges of integers required to effect this.
Exact tables have been prepared for 2 <n £ 14. Daniels and Ken-
dall (6) have developed a large sample test for the significance of
the difference between two correlations when the correlations in
the parent populations are not zero. They have also attacked the
problem of establishing confidence limits for a rank correlation
when a nonzero correlation exists in the parent population. Kendall
(21) has established a partial correlation coefficient based on ranks,
but has been unable to test its significance.

h, Tables. Probabilities for S have been tabled for n <10
by Kendall (23, 24) and for n < 40 by Kaarsemaker and van Wijng_aarden
(19). (Because of the linear relation between S and T, the probability
of the T corresponding to S is also the probability of S; therefore, T
tables can also be used to test for rank correlation when there are no
ties. See 3, Inversions as a Test for Linear Trend.)

If there are no ties and if all rank permutations are equally
probable, i.e., if x and y are uncorrelated, the distribution of S rapidly
approaches the normal distribution . as n increases (5, 20, 23, 35, 44).
Asymptotic normality of S in the null case has also been found when ties
are present in one ranking (52) and, under certain conditions, when both
rankings contain ties (7). When x and y are correlated, the dis-
tribution of S is asymptotically normal under certain stated conditions

(16, 23).

When there are no ties, the distribution of S has mean zero
and variance n(n-1)(2n+5)/18. Therefore when n is too large for the
exact probability tables to be applicable, approximate probabilities can

S

Jnn-1)(2n+5)
18
tables, The approximation can be improved by correcting for con-
tinuity. S is discretely distributed, successive values of S being two
units apart; therefore, a tail area of the S distribution whose least
extreme value is S would be represented, on a continuous curve, by
an S one unit less extreme. The correction for continuity therefore
consists of decreasing the value of S by one unit if S is positive or in-
creasing it by one unit if it is negative, before calculating the critical

be obtained by referring the critical ratio to normal
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ratio. If ties are present, different continuity corrections are re-
quired depending upon the situation. Some of these corrections have
been given by Kendall (23).

The conditional variance of S given that certain ties exist and
are assigned the midrank has been given by Kendall and others (23, 27,
43). If only one ranking contains ties, the variance of S is

n(n-1)(2n+5) - Zt (t-1)(2t+5)

where t is the number of ranks in a tied

13
group, i.e., the number of observations tied for a given value, the sum-
mation being taken over all such groups (the value of t perhaps varying
from group to group). If both rankings contain ties, the variance of S is

n(n-1)(2n+5) - Zt(t-l)(2t+5) -Z (p-1) (2pt5)

18

{it (t—l)(t-Z)}{Zp(p.-l) (p-Z)} {Zt (t—l)} {Zp(p-lg where t is
+

9n (n-1) (n-2) 2n (n-1)
defined as above but refers only to the ties in one ranking andpis analo-
gous to t but refers to ties in the other ranking. The mean S remains
zero when there are ties in one or both rankings. When critical ratios
are referred to normal tables, the proper correction for continuity de-

pends upon the tying situation, The correction for certain cases has
been given by Kendall (23).

j. Sources, 1-7, 9-11, 14-28, 31-36, 39, 42-44, 46-48,
50, 55-57.

3. Inversions as a Test for Linear Trend

a. Rationale. Suppose that, in Kendall's test for correlation,
the x variable were the time at which a unit "appeared', or was gener-
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ated, and the y variable were some quantitative measure on the unit
itself. Kendall's test would then test whether or not the size of the
y measurement is randomly related to the order in which the units
were generated, and it would be particularly likely to reject the hy-
pothesis of randomness if there were a linear trend in the generat-
ing process.

The test can be applied by following Kendall's procedure,
in which case the test statistic is S and Kendall's tables are the
appropriate ones to use, or by following a slightly different, but
equivalent, procedure outlined by Mann. The observations, i.e.
y measurements, are arranged in temporal order of appearance, and
the number of times a subsequent measurement exceeds a given y is
counted for each y and the sum obtained for all ys. This sum is
called T. It is simply the complement of the number of inversions
and is related to I and to S in the following manner T = % (n-1) -1=S+1,.

b. Null Hypothesis. Each of the n! possible permutations
of order for the size-rank of the ys was equally likely, before sampling,
to result by arranging the ys in the temporal order in which they were
generated. A sufficient condition for the validity of the null hypothesis
is that the size of the y observations is uncorrelated with the temporal
order in which they are generated and all assumptions are true.

c. Assumptions. The observations have been taken indepen-
dently and at random from a population in which the ys are continuously
distributed, or exist naturally in the form of untied ranks, and in which
ys are generated one at a time.

d. Treatment of Ties. See 2, Kendall's Rank Order Correla-
tion Test., If ties are given the midrank, S, rather than T or I, should
be used as the test statistic.

e. Efficiency. When used as tests of randomness against
normal regression alternatives, Mann's T test has asymptotic relative
efficiency of (3/7r)1/:' or .93 relative to the parametric test based
upon the regression coefficient, b (49, See also 45). It is therefore
equal or superior to most other distribution-free tests for trend. See
Table I in Introduction and (45, 49, 13, 37, 38).

The test is consistent and unbiassed (29, 14) under general
conditions stated by Mann (29).
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f. Application, If x is time in the example given under Appli-
cation for Kendall's test, the time-ordered y values are 7, 4, 16, 53,
84 for which T = 9 and S = 8. Significance levels may therefore be
obtained either by using Mann's probability tables for T or Kendall's
for S.

g. Discussion. See 2, Kendall's Rank Order Correlation
Test,

Elfving and Whitlock (12) have proposed a test for trend which
is equivalent to T pooled over several sets of observations, The test
statistic is equivalent to the sum of r Ts, where r is the number of
sets of observations., Its mean and varianceare the respective sums
of the means and variances for the individual sets. Thus, in effect,
the test is carried out by referring to normal tables a critical ratio

: n(n-1) . .
whose numerator 1sz [T - sl ] and whose denominator is the square
2n3+3n% - 5
root ofz = 7; — , n referring to the number of observations in
r

a set.
n. Tables. Mann (29) has tabled the exact T probabilities

for 3Sn< 10, By using S instead of T, Kendall's tables (23, 24), or
the exact tables of Kaarsemaker and van Wijngaarden (19) can be used,
the latter yielding exact probabilities for n's up to 40,

The distribution of T has mean %(n—l) and variance

2n3 + 3n2 - 5n

e

infinity (29, 40, 54). Therefore when n is too large for the exact
tables to apply, approximate probabilities for T may be obtained by

and approaches a normal distribution as n approaches

n
T - Z (n-l)
referring the critical ratio to normal tables. (To

\/Zn?’ + 3n2 - 5n
72

correct for continuity, positive numerators should be decreased,

and negative numerators increased, by 1/2). However, if ties exist
and are given the midrank, neither the T tables nor the normal approx-
imation to T should be used. Instead, the test should be carried out
using Kendall's S as the test statistic.
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jo Sources. 4, 8, 12, 13, 14, 19, 23, 24, 29, 30, 37, 38,
40, 41, 43, 45, 49, 52, 53, 54.

4, Mann's K-Test

a. Rationale. Mann (29) finds that "If P (X > X )} increases

rapidly with j-i, then another test is more powerful than t‘]he T-test. "
This test, the K-test, consists of arranging the observations in their
order of appearance, Xo’ Xl’ XZ’ S Xn_1 and finding '"the small-

est value of K for which the following set of inequalities is fulfilled:

> > >
X > Ky X >Xyy eues X >X_

= >
X1 XK+1""’X1 Xn-1

H

1"
Xn--K -1 > Xn-l

The probability that for n untied observations K will be some specified
integer K is simply the number of permutations in which K = K divided
by n!, the number of possible permutations of the n observations.

b. Null Hypothesis. See 3, Inversions as a Test for Linear

Trend,

c. Assumptions. See 3.

d. Treatment of Ties, Make no compromise in interpreting
the inequality sign (see above) when determining K. The probabilities
thus obtained will err in the conservative direction, i.e., rejection
will be less likely than if there were no ties.

e. Efficiency, Mann states that when Pr (X, > X.) increases
rapidly with j-i, the K-test is more powerful than the T-test. He
notes ''that the K-test is most powerful with respect to a fairly wide
class of alternatives',
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f. Application. In the example given for the T-test, the time-
ordered observations are 7, 4, 16, 53, 84, There is obviously no
downward trend, which the K-test is designed to detect. However, the
presence of an upward trend may be tested by reversing the signs of
the inequalities given under Rationale, and proceeding in the manner
outlined for downward trend. The 7 is exceeded by all observations
from the 16 on, the 4 is exceeded by each of the two observations
following the 16, and the 16 is exceeded by the 84, Therefore K is
the subscript which goes with 16, which is the third observation in
order, therefore having the subscript 2, since subscripts start with
zero. So K = 2 which for n = 5 has a tabled probability of . 0667,

g. Discussion. This test has two outstanding disadvantages.
First, it is easy to make errors in determining K., The det ermination
of K involves examining several possibilities in order to pick the
smallest K satisfying a rather involved set of inequalities. And the
subscript notation is a confusing one since K is one unit less than the
positional rank of the observation to which it refers. Furthermore,
for certain order permutations there is no value of K which satisfies
the inequalities. (Zero cannot be used to designate K in this situation
because zero refers to the first observation in order of appearance,)
Second, the K-test apparently is restricted to one-tailed tests of hypo-
theses. K is not symmetrically distributed, so the two-tailed probability
cannot be obtained by doubling the one-tailed probability. And the value

of K, for a test of downward trend, though different from the value it
takes in testing for upward trend, presumably is not entirely indepen-
dent of it.  So, if the presumption is correct, two-tail probabilities
cannot be obtained by combining probabilities from two opposite one-
tailed tests. The following table serves to illustrate these points.

h. Tables. Mann (29) has tabled the probability that K < K
for 3 £n <9, Actually these tables will suffice for almost any prac-
tical application regardless of the value of n. For n = 10 and K = 5,
the first five observations are compared with the last five (i.e., the
following comparisons are made: XO with Xg, Xy X7, X8, X9; X1
with X6’ X7, XS’ X9; X2 with X7, X8’ X9; X3 with XS’ X9; and

X4 with X9). Since under the null hypothesis the observations are

randomly arranged in order, for n > 10 the test may be arbitrarily
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applied to only the ten observations consisting of the first five and

the last five in the series. Whenn = 10, the probability that K< 5

is .0098. 1In this case, this is also the probability that K< n - 5.
When n is greater than 10 and 4 <K <n - 5, if the set of inequalities
holds for K, it will also hold for a "K'" of n - 5 when the set of obser-
vations is reduced in size to incude only the first five and last five
observations. The probability of the latter will be greater than that
of the former, but the increase will be from some value smaller than
0098 to . 0098, thus still being beyond the . 01 level of significance.
Therefore, for practical purposes only the first five and last fiv e
observations are necessary to conduct a reasonable test of significance.

i. Sources. 29
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TABLE X

TABULATION OF THE DISTRIBUTION OF K WHEN n = 4

Size-Rank Permutation K=1 K=2 K=3 K = Nothing
1 2 3 4 X
1 2 + 3 b'e
1 3 2 < X
1 3 Z 2 X
1 4 2 3 X
1 4 3 2 X
2 1 3 4 X
2 1 4 3 X
2 3 1 4 X
2 3 4 1 X
2 4 1 3 X
2 4 3 1 X
3 1 2 4 X
3 I} 4 2 X
3 2 1 4 X
3 2 4 1 X
3 + 1 2 X
3 4 2 1 X
4 1 2 3 b'e
4 1 3 2 X
4 2 1 3 b'e
% 2 3 1 X
4 3 1 2 X
4 3 2 1 X
Point Probability .042 . 167 .292 .500
Cumulative Probability . 042 . 209 .500 1.000
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CHAPTER VII

RUNS OF CONSTANT PROBABILITY EVENTS

In a series of two kinds of events, a and b, although the
proportionate number of a's and b'!s will necessarily depend upon
the ratio of their individual constant probabilities of occurrence,
the pattern in which the obtained a's and b's arrange themselves
will not and will be random unless a's and b's are sequentially
dependent. In that case like events may tend to cluster, and this
may be indicated by an unusually small number of runs, or clusters
of like objects, in the pattern, or by runs of unexpected length. Thus
the total number of runs, the length of the longest run, and various
other run statistics can be used as the sample information with which
to test for randomness of pattern of arrangement against the alterna-
tive of sequential dependency. By judicious definition of the two
types of event, this test can be employed to test whether two sampled
populations are identical, whether a trend exists in a sequentially
sampled population, whether learning is taking place, etc. Run
tests are often rather weak and inefficient, depending upon the type
of application contemplated. However, their power may be greatly
increased by introducing certain modifications (such as Ramachan-
dran and Ranganathan's) or by combining the run test with an inde-

pendent test (as in David's Chi-square Smooth test of goodness of
fit).
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1, Basic Formulae

A run is an unbroken sequence of similar events or like
objects. For example in the series aaba bbb aa there are
five runs: one run of a's of length 1, two runs of a's of length 2,
one run of b's of length 1 and one run of b's of length 3. The
following notation will be used in the derivation of run formulae
when there are two kinds of objects. Let rij be the number of runs

of objects of type i whose length is j and let S be the number of runs

of objects of type i irrespective of length, i.e. of all lengths, Let
n, be the number of objects of type i and let n be the number of ob-

jects of both types. The two types of objects will be designated 1 and
2 respectively., The only things which can interrupt or terminate a
run of like objects are a run of the other type objects or else termi-
nation of the entire series., Therefore s the number of runs of

1's can either be one greater than, equal to, or one less than Tss the

number of runs of 2's. When r =r_+1 the series can begin (and end)

1 "2
in only one way - with a run of 1's, Likewise when r,= r1+1 the
series must begin and end with runs of 2's, However, when r,=r

1 "2
the series can either begin with a run of 1's and end with a run of
2's, or begin with a run of 2's and end with a run of 1's. Therefore
it will be convenient to introduce the notation F(rl, r2)= 1if r #r

1" "2
=2 if r=T,.
The r, runs of 1's of various lengths can be permuted in

1
1

r . ways. But a permutation which merely exchanges the positions

of runs of 1's of the same length does not change the appearance of
the series, The rij runs of 1l's of length j can be permuted in rljl

ways without changing the appearance of the series. Therefore,
the number of distinguishable permutations of the r, runs of 1's is

1‘1.

. For each of these distinguishable permu-
1 t

t
Lye Ejpe @6s rlnl'

ol
tations of runs of 1l's, there are ¢ distin-
ORI, N (R 4
2% 22 an
guishable permutations of the runs of 2's, And since, if

r =71, the series can begin in two ways, the total number of
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distinguishable permutations given that there are r1 runs of 1's

and r, runs of 2's of specified lengths is

Fi{z g, rZ). Finally,

t
since there are — > — dintinguishable permutations of n, I's

t {
nl. nz.

Z
I's of length 1, r12 of length 2, etc., as well as exactly er runs

and n_ 2's, the probability that there will be exactly r11 runs of

of 2's of length 1, % of length 2, etc., given that there are

n1 1's and nZ 2's in the series is

1
T r! F
Z (r1’ rz)

1

Pr (r )= ' ) ' l :
1 t 1 1 1
! Sl e r1n1° Rls gz e anZ‘ n!/n)in,!

Suppose that we are interested in the breakdown of runs
of 1's according to length, but that we are not interested in the cor-
responding breakdown of runs of 2's, Considering only the 1's,

L
there are : : y distinguishable permutations of
Tt Y12ttt Tip ot
1
the r, runs of 1's, Now imagine the nZ 2's arranged in a line.

There are nz-l spaces between 2's, and the r2 runs of 2's can be

obtained by selecting rz-l of these n_-1 spaces and "widening"'

2 -1
them for occupation by runs of 1's. This can be done in (22_1)
2

ways, If 5o = rZ-l, then any given permutation of runs of 1's can
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be fitted into a specified rZ-l spaces between 2's in only one way,

since the series must start and end with a run of 2's, If rl=r2+1,

in addition to the rz-l spaces between 2's the runs of 1's also

occupy the space to the left of the leftmost 2 and to the right of the
rightmost 2., The series starts and ends with runs of 1's, and
the r;-1 spaces between 2-runs are occupied by the second to the
ri-1st l-run. Again, this can be accomplished in only one way.
However, if r1=r2, the first 1-run can be placed either to the left

of the leftmost 2-run, or between the first and second 2-runs.

Therefore the probability of exactly r,, runs of 1's of length 1,

T of length 2, etc., and r, runs of 2's of any lengths given that

there are n, 1's and n, 2!s is

1 2
r ]
. -1 )
Pr (r ., ¥.)= - P27 Flr,,r,) [ —2
1J 2 1‘ .1‘ i r t rz_l 1 2 n .'n.'
[ SR 7 In.° 1 2

1

Suppose now that we are interested in neither the lengths
nor the total number of runs of 2's. The r, runs of 1's can be in-

serted into any Ty of the n2+1 spaces before, between, and after
the 2's, i.e., into any of the nz-l spaces between 2's as well as the

space to the left of the leftmost 2 and the space to the right of the

rightmost 2. This can be done in (n2+l) ways, Therefore, (the
A5
1
rest of the derivation being analogous to that given earlier) the
probability of exactly r,, runs of 1's of length 1, T, of length

2, etc,, given that there are n, 1's and n, 28 is

15 ! 1
Pr AT )= 1 (n2+l) /—n'___
1j D [ ) . T y 2| o I L

wilis

Since the number of runs of 2's is unspecified, it may be r,

r, or rl+l and the term F(rl, rZ) is not required in the formula,

The preceding formulae give probabilities for the entire
run pattern in the sense that the exact number of runs of each pos-
sible length is specified, at least for runs of one type. In order to

obtain the more general probability for only certain specified r, ,
1]
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one fixes these rij as constants and sums the formula over all other

values for which the relationships,

are satisfied. For example if

/_,_ jrij=ni and Z;] rij=.ri’

n, = 7 and n, = 9 the probability of exactly one run of 1s of length
4 would be

Y ,
Pr(r;, = 1) = Z ' 1l ' (IrO)/ 16} _

1]
Ty rlz.r13. 1} 1 719!
4 10 31 10 2110
3 ar L) Yearyrar U3) Yeprrr Up)
16!
7. L ]

since a run of length 4 could be accompanied by three runs of length
1, one of length 1 and one of length 2, or by one of length 3 while
still fulfilling the condition that n_ =7 and since the number of runs
of 1s in these three cases is 4, 3, and 2 respectively.

Now suppose that we are interested in number of runs,
only, and not in their lengths. Imagine then_ 1s arranged in a
line, There are n,-1 spaces between ls and ]the ls can be sep-
arated into r. runs by selecting and "widening' r_ -1 of these
spaces, then'filling them with runs of 2s. The rl-l spaces can be

selected in (?l:i) ways, For each of these ways the r, runs of

2s (which will eventually be interlaced with the 1s) can, by anal-
ogous reasoning, be selected in (rrlZ:}) ways., Any given set of

r, runs of 1s and r, runs of 2s can be fitted together in one way

if oy = = + 1 and in two ways if = T The number of distinguish-
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able permutations of r, runs of 1s and r, runs of 2s is therefore

1

(nl‘i) (nz'i) F(rl, r’). The number of distinguishable permu-
r- ) i 2
2

tations of n, 1s and n 2s without restriction as to numbers of runs

is _'_n_{_!__ . Therefore the probability of exactly r, runs of 1s
Ty Sy
and r, runs of 2s given that there are n, s and n2 2s is
n,-1, n -1 0.4
Pr (rl’ rz) = (rl—l) (rz_l) F(rl, 1‘2)/ : :
1 2 ny. D,

If we are interested only in the number of runs of 1s and

are indifferent to whether r, equals rl—l, r, or r1+l, we still

select the 5., EOns of 1s by selecting rl—l of the nl-l spaces be-

tween ls for widening, However, now the spaces before and after
the 2s as well as the spaces between 2s are available for occupation
by 1s because the number of runs of 2s is not fixed, Therefore
there are n2+l spaces available for occupation by the rl runs, and

they can be chosen in (nz:l) ways. The rest of the derivation

is analogous to that described earlier. Therefore, the probability
that there will be exactly r, runs of 1s given that there are n, Is and

-1. n_.+1 n:
Pr(r,)= (C1°0) (727) _—
1 rl—l 1‘1 nlln‘

All of the run formulae heretofore listed take nl and n2 as

given, They give probabilities conditional upon the existence of ex-
actly n; ls and n_ 2s in the obtained sample. If one is interested

n, 2s is

in the arrangement of 1s and 2s but not in the probability of obtain-
ing a 1 or a 2, the foregoing formulae are generally the appropriate
ones, However if "1" and "2" are mutually exclusive outcomes of
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a binomial event, with probabilities p and q respectively of occur-
rence on a single trial, the experimenter may be interested in the

compound probability that there will be n, 1s and n, 2s and that

their arrangement will contain a specified configuration of runs.
This compound probability is obtained by taking the product of the

n n

binomaial probability, (2) P lq

1
ability formulae listed earlier gives the appropriate conditional
probability for the specified configuration of runs,

, and whichever one of the prob-

The various formulae given above could be used as the
bases for a variety of statistical tests of the hypothesis that ls
and 28 are arranged randomly, The particular formula used
would depend upon the conditions taken as given and upon the alter-
native hypothesis against which one wished the test to be most sensi-
tive. However, although a multiplicity of such tests are possible,
calculations of probabilities generally become quite involved at any
but the smallest sample sizes. Therefore, in the following sections
only those tests will be described for which probabilities have been
tabled.

2. The Wald-Wolfowitz Total Number of Runs Test

a. Rationale. Suppose that two samples have been drawn
(randomly and independently), each from a continuously distributed
population, and that one wishes to test whether or not the parent
populations are identical, Let the sizes of the two samples be m
and n and let their observations be designated as xs and ys respec-
tively, Now arrange the m+n observations in increasing order of
magnitude irrespective of the sample to which an observation ori-
ginally belonged. Finally, label each such observation x or y
depending upon the sample from which it came. If the two samples
came from identical populations, then the pattern of arrangement
of xs and ys is a random one since x and y are arbitrary labels at-
tached to observations drawn randomly and independently from the
""'same' population. However, if the samples are from different
populations, one would expect observations from the same sample
to tend to cluster; so the total number of runs should tend to be
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less than the number expected on a purely chance basis.

Let U stand for the total number of runs of both xs and
ys. Since the number of runs of xs can be one less than, equal
to, or one greater than the number of runs of ys, U can be an even
number in only one way, but can be an odd number in two ways.
Substituting into the formula

Pr(r), r,) = (?i:b (‘r‘gj}) F(rl,r2>/<§)l,

; _ _ ,m=-1. m-1 m+n
lfl‘l rz-r; Pr (rl! rz)-z(r_l)(r_l)/(m )’

; _ _mn-1, m-1 m+n
1£r1 randrz—r+1, Pr(rl’rz)_(r-l)(r)/(m)’

: _ _ _ -1, m-1 m+n
andlfrl-r+1andr2-r, Pr(rl’rZ)_(r)(r-l)/(m)'

Therefore, the probability that the total number of runs will be
. - _ ,m-1, m-1 m+n
some even number, 2r, is Pr (U=2r) = 2(L_ ! r_1)/( m )

and the probability that it will be some odd number, 2r+l is

n-1, m-1 n-1. m-1
pr(U=2r+1)= (r-l)( r )+(r)(1‘—1)
m+n
(TR

b. Null Hypothesis. Given that there are m xs and n ys,

each of the (m+n)distinguishab1e arrangements of xs and ys was
m

equally likely to have been the arrangement actually obtained. A
sufficient condition for the validity of the null hypothesis is that the
x observations and y observations were drawn from identical popu-
lations and that all assumptions are true,
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c. Assumptions, For each sample the observations
were drawn randomly and independently from a continuously
distributed population.

d. Treatment of Ties, Ties are a problem only when
observations from both samples are tied for the same position,
or rank, in order of increasing magnitude. In many, but not
all, such cases the resolution of ties can affect the total number
of runs, A tie for which the total number of runs varies de-
pending on how the tie is broken will be a called a '"critical tie,
For a conservative test critical ties should be resolved in the
manner least conducive to rejection of the null hypothesis, How-
ever, if one wishes to minimize the average error in probabilities,
the following method of dealing with critical ties may be pursued.
For tied groups consisting of a single x and a single y, randomly
select one-half of the groups and resolve ties so that the x pre-
cedes the y with which it is tied; for the remaining half, resolve
ties so that the y precedes the x; if an odd group remains, resolve
the ties by flipping a coin, For tied groups consisting of a single
x and two ys, resolve ties so that for a randomly selected 1/3 of
these groups the order is xyy, for another randomly selected 1/3
it is yxy, and for the remaining 1/3 it is yyx, any remaining groups
being resolved by randomly selecting one of the orders xyy, xyx,
yyx, a different randomly-selected order being used for each such
group. To generalize: if there are k groups in which s xs and t
ys are tied with one another, resolve ties by successively selecting

(s:t) of the k groups and replacing each of them with a different,

s+t

randomly assigned one of the (
s

) distinguishable orderings of
s xs and t ys; if k is not divisible by (s:t) resolve ties in the
remaining groups by randomly assigning each of them a different

one of the (s: t) possible orderings,

e. Efficiency, When applied to symmetrical populations
known to be equal in all respects except for location, a test for
identical populations is equivalent to a test for equal means, When
both tests are applied to samples from normally distributed popu-
lations with equal variances, the Wald-Wolfowitz form of the run
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test has relative to Student's t-test an asymptotic relative efficiency
of zero (33 see also qualifications stated in 30, 33) and a smallsample
efficiency which, when each sample contains five or less observa-
tions, generally exceeds .96 and may be as high as .995 (13). It
also has an A, R.E, of zero relative to the F ratio when applied

to normal populations as a test for dispersion (33). The test com-
pares poorly with other distribution-free tests (see Table I in Intro-
duction). It had the least power of the tests investigated by van

der Waerden (47), Epstein (14), and Lehmann (30), the former two
authors sampling from normal populations with homogeneous var-
iances, the latter sampling from a continuously distributed popu-
lation, It was found by one or more of these authors to be inferior
in power to the following tests: Student's t, van der Waerden's X-test,
Lehmann's most powerful test, Mann-Whitney test, Westenberg's
Median test, Epstein's exceedances test, Smirnov!'s maximum devia-
tion test. The Wald-Wolfowitz test is consistent if the ratio m/n

of sample sizes remains constant as sample sizes m and n approach
infinity and if certain other very mild conditions are met (48, 29).

If the ratio m/n does not remain constant, but approaches zero

or infinity, the test is inconsistent, That is to say, .if one sample
is of much greater size than the other, observations from the

sample of smaller size are almost certain to be separated from each
other by observations from the larger sample; thus, the number of
runs will tend to be a maximum regardless of whether the null hypo-
thesis is true or false (29).

The power function for Steven's form of the run test has
been obtained against the alternative of a Markov chain by David
(10).

f. Application. Suppose that a sample of observations
has been taken on randomly selected and assigned subjects under
each of two treatments and that it is desired to test whether the
two treatments differ in any measured respect, The data are
shown below,

Treatment x 5 14 23 61 114 125 131
Treatment y 47 55 64 66 7l

If the data are arranged in order of increasing magnitude with the
sample from which each observation came listed below it, we have:
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5 14 23 47 55 6l 64 66 71 114 125 131

There are three runs of xs and two of ys, so U = 5. Entering the
probability tables for runs withm =7, n = 5, and taking the small-
est numbers of runs as the rejection region, we find that the largest
value of U significant at the one-tailed . 05 level of significance is 3.
Since U = 5 in the above data, the hypothesis of identical populations,
and therefore equal treatment effects, cannot be rejected at the
significance level chosen. Since a casual inspection of the data
strongly suggests that the populations have unequal variances, the
above example serves to illustrate the weakness of the test.

g. Discussion. The total number of runs can be used as
a test statistic in ways other than that described for the Wald-Wolf-
owitz form of the test. Actually the total number of runs is an
appropriate test whenever one is interested in the randomness of
arrangement of mutually exclusive events, fixed in number, and
constituting a dichotomy. It can be used as a test for trend by
labeling observations above and below the median as x and y respec-
tively; if there is a linear trend, the number of runs should be
smaller than that expected by chance. It can be used (19, 7) to
test the randomness of wet and dry days in order of appearance;
or to test whether occupied seats at a lunch counter tend to occur
in isolation, bordered by vacant seats(15). In such cases the null

hypothesis is simply that given m xs and n ys each of the (m+n)

distinguishable arrangements is equally probable. The assumptions
are that there are only two mutually exclusive and unconfusable cate-
gories and that sampling is random and independent. The efficiencies
found for the Wald-Wolfowitz test relative to Students t are, of course,
not applicable here, The formulae for Pr(U), given under Rationale,
apply in all of the above cases. One additional case in which it does
not apply is that in which the m 1s and n 2s are arranged around a
circle rather than in a straight line. Stevens (42) has derived the
probability for the total number of runs in this case.

h. Tables. Probabilities for U have been tabled by Swed
and Eisenhart (44) for m <n < 20, and for certain other cases. Major
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portions of their tables are republished in (I-8, I-23, I-43,);
smaller portions can be found in (22, 23, 50). David (9) has
provided tables appropriate when m+n < 14 and 2 < U < 14,

2mn

The mean and variance of U are + 1 and

m+n

2mn (2mn-m-n) respectively and U is asymptotically normally

(m+n)2 (m+n-1)

distributed if the ratio of sample sizes remains constant while
sample sizes approach infinity (48). Therefore, when samples
are too large for the tables to apply, approximate probabilities can
be obtained by treating U as a normal deviate and referring the

U- 2mn -1
m+n

critical ratio

to normal tables. (To correct
mn (Zmn-m-n)

(m+n)% (m+n-1)

for continuity, reduce the absolute value of the numerator by 1/2)
Generally the test will be one-tailed with '"too few'' runs constituting
the critical region, in which case, of course, a one-tailed probability
must be read from the normal tables for the critical ratio.

i. Sources. 9, 10, 13, 14, 15, 22, 23, 29, 30, 33, 34,
35, 42, 44, 47, 48, 49, 50, 51, 52,

3. Length of the Longest Run

a. Rationale. Just as the total number of runs is an index
of a possible tendency for like objects to cluster, so is the length of
the longest run. Using the notation of Section 1, the probability
that the longest run of 1ls will be of length S can be obtained by taking
n, and n, as fixed and summing the formula
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rll n,+1

Pr (r,.)= ( ) (
lJ I I ] 1 L

rll' rlZ' rl(S-l)' rlS' 1 |

over all values of T and over all sets of Ty1? Ty oo r.1(5—1),,]:'15

n
which satisfy Z 1 jrlj =n,, ‘[_ rlj =1 and r
j=1 j

that Ty exceeds neither n, - S +1 nor n, + 1y The probability

that the longest run of either ls or 2s will be of length S can be

1S _z 1 and such

obtained by an analogous attack upon the formula

Pr(r; )= F(r,, r,) /(:1)

1 1 1
lln 1‘12. * 00 I‘lS. r21c 1‘22. LY I‘ZS.

T

1s and rZs cannot both be zero at the same

time. The above method is involved and considerably more con-
venient formulae have been derived for such probabilities (1, 34,
38, 49); however, their derivation is not as simple as those which
have been presented here.

with the proviso that r

b. Null Hypothesis., Given that a sample contains n, ls

n.+n
and n, 2s, each of the ( ln ) distinguishable arrangements of

1

ls and 2s was equally likely to have been obtained prior to sampling.

c. Assumptions. Sampling is random, observations are
independent, and all observations can be unmistakably classified
into one of two mutually exclusive and unconfusable categories.

d. Treatment of Ties. Ties are a problem only when
their resolution may change the length of the longest run. Such
ties should be resolved in the manner least conducive to rejection
of the null hypothesis or else dealt with in a manner analogous to
that outlined for critical ties in Section 2, The Wald-Wolfowitz
Total Number of Runs Test.
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e. Efficiency. Power functions were obtained by Bateman
(1) for the length of longest run and for the total number of runs as
tests of randomness against the alternative of a simple Markov chain,
i.e., that each event is dependent upon the preceding event but no
other. For this case the length of longest run test was found to be
less powerful than the total number of runs test.

f. Application. In the following series aabbaaaabb
bbbbbabaaa, the longest run contains 7 like objects. Refer-
ring to tables of probabilities with n, = 10, n, = 10 and longest
run=7, the probability that atleast one run of length 7 or more will

occur either among the a's or among the b's is found to be .032. The
probability that at least one run of 7 or more b's will occur is . 017,

g. Discussion. See 2, The Wald-Wolfowitz Total Number of
Runs Test,.

h. Tables., Bateman (1) has provided probability tables
for "at least one greatest run, of either kind of element, of given
length'" for values of n, tn, £ 20. These are point probabilities,

-

i.e., are for one or more runs exactly S in length, Mosteller (38)
has tabled the probability of at least one run of length S or greater

among elements of one type, either type or each type forn_=n_= 5,
10, 15, 20 or 25. Portions of Mosteller's tables have been rgpub-
lished by (50, I-15).

i. Sources. 1, 34, 38, 49, 50,

4, Length of Longest Run as a Test for Randomness against
Trend Alternatives

Suppose that a series of observations have been taken upon
a continuously distributed variable and that they have been arranged
in the order in which they were drawn, no two observations having
been drawn simultaneously. If each observation is now labeled A
or B depending upon whether it is above or below the median for the
entire series, the presence or absence of trend can be tested by
using as the test statistic one of the following: the length of the
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longest run on one side, either side or both sides of the median.

If there are an odd number of observations one of them will be the
median and it should be discarded. This test has been proposed

by Mosteller (38) who has published appropriate tables for the cases

where n1 = n2 =5, 10, 15, 20 or 25. See also (50, I-15).

5. Length of Longest Run in Binomial Trials

a. Rationale. Rationale of 3, Length of Longest Run,
discussed the method of obtaining the formula for the probability
that the longest run of 1s will be of exactly length S. This prob-
ability was obtained by taking n. and n_ as fixed constants, and
is contingent upon their having %he values assigned them., Let Pr
(S| n;) stand for such a probability, and let n =n_ + n_ be fixed.
Now suppose that the occurrence of al or a 2 is é bindmial event
with probability p or q respectively for a single trial. If, for every

possible value of n, Fr (S]nl) is multiplied by (:) p™1 an and the
1

products are summed, the sum is simply the a priori probability

that in n binomial trials the longest run of consecutive ls will be

of exactly length S. More convenient methods and formulae are used
in actual tabulation of probabilities (21, 34, 46, 49).

b. Null Hypothesis. The probability that in n trials there

n n

will be exactly n_ 1s is (;1) 6 T * wndfor any obtained valie of n,
n, +n 1
each of the ( . ) distinguishable arrangements of 1s and 2s is
1

equally probable.

c. Assumptions. Sanpling is random; observations are
independent; 1 and 2 are mutually exclusive outcomes of a binomial
event with constant probabilities p and q = 1 -p for a single trial,

d. Treatment of Ties. Break ties in the manner least
conducive to rejection of the null hypothesis,
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e. Efficiency. No information available.

f. Application. An experimenter wishes to test whether
or not a mor.lT{ey can learn to associate a red light with food. The
monkey's food is always hidden in one of five boxes and the ''re-
ward' box is always illuminated by a red light, The probability
of ""'success'" on a single trial is therefore 1/5 if the null hypo-
thesis of no learning is true. Consulting Grant's tables (20)
the experimenter finds that when p = 1/5 a run of 4 or more suc-
cesses in 40 trials is significant at the .05 level. Therefore he
decides to run not more than 40 trials and to reject the null hypo-
thesis whenever the number of consecutive successes reaches 4.
The monkey's successes and failures to go first to the red-illumin-
ated box are: FFFSFFFFFSSFSSSS, soonly 16 of the
maximum of 40 trials had to be run. The significance level, how-
ever, is not reduced but remains . 05 since it had originally been
intended to run as many as 40 trials if necessary.

g. Discussion. The question arises as to which type of

test is appropriate, that which treats n, and n, as given or that

which treats p as given. Mosteller!s test for trend takes n, =

n, = .1_21. and indeed this must be the case since n continuously dis-

tributed observations are being classified as above or below their
own median., In this case it would be very improper to treat
""above the median' as a binomial event with probability 1/2 since
in n trials of such an event, n, should be able to assume any value

from zero to n, which is obviously impossible if n1 is the number

of the n observations above the median of the same n observations.
Similarly if one were interested in the randomness of a seating
arrangement, one would take the observed number of occupied and
unoccupied seats as given since it is only the pattern of occupancy,
not the probability of occupancy, in which one is interested.

On the other hand suppose that one knows that he is dealing
with a binomial event (which is free to occur any number of times
from zero to n in n trials) and that one can state, a priori, the exact
value of the constant parameter p. Then by using the '"binomial"
approach outlined under Rationale one need only conduct that number
of trials between S and some predetermined value, n, necessary to
produce the criterion of S consecutive successes. Research effic-
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iency has therefore been gained. Furthermore, when used as a
test for learning, as outlined by Grant (20, 21) and as conducted
under "Application'", the '"binomial" approach has particularly
desirable features, i.e., the test is particularly sensitive to the
alternative hypothesis. @ When learning begins p (which is con-
stant only if the null hypothesis of no learning is true) increases.
This causes n, to tend to assume a value greater than chance
would have given it, And naturally with a greater number of
successes there are more ways of obtaining a run of S consecu-
tive successes and the probability of a run of length S increases
simply because of the "inflated' value of n.. Learning, however,
also increases the probability that success]ful trials will be tem-
porally adjacent. Therefore, learning makes rejection particu-
larly likely by increasing both the probability of temporal associa-
tion among the number of successes occurring and by tending to
increase the number of successes beyond what would be expected
if the null hypothesis were true.

h, Tables. Grant (20, 21) has tabled the probability of
a run of at least S successes in n trials for the following values of

p: 1/2, 1/3, 1/4, 1/5. See also (18).

i. Sources. 4, 5, 7, 8, 15,18, 19, 20, 21, 34, 39,
dby 49,

6. The Sum of Squared Run Lengths

The Wald-Woifowitz total number of runs test is one of
the least powerful distribution-free tests for goodness of fit, i, e,
that two samples were drawn from identical populations. Pre-
sumably this is partly because the total number of runs does not
directly take account of the lengths of runs which are the more
explicit indices of the tendency of like objects to cluster. The
length of the longest run, by taking account of only the longest run,
ignores the 'information'' contained in the lengths of the less-than-
longest runs. And in the case investigated by Bateman (1) this
statistic was found to be less powerful than the total number of runs.
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Ramachandran and Ranganathan (40) have proposed a test
which overcomes the objections voiced above. Their test statistic,
N, is the sum of the squares of lengths of runs, i.e., N =

?‘jz % +>\ J,Z X, Thus all runs are taken account of, but
¥ iy J

J J
each run is permitted to influence the test statistic in proportion
to the square of its length, Its authors recommend the test for
the same situation dealt with by Wald and Wolfowitz, i, e, obser-
vations are arranged in increasing order of magnitude and runs of
Sample 1 observations and of Sample 2 observations are noted, the
test being used to decide whether the two samples belong to identical,
continuously distributed, populations. The authors, considering

only the case where n, =n_, have tabled values of N required for

various levels of significance. The tabled values of N are exact
for the cases 3 §n1 <5 and approximate for 6 = i S 15, in the

L

latter case having been obtained by reading points from a Type VI
curve fitted to the true distribution of N.

7. Dixon's Test

A test analogous to that of Ramachandran and Ranganathan
was proposed earlier by Dixon (12). Two samples of sizes m and n,
with n < m, are drawn from continuously distributed populations and
arranged in order of increasing magnitude irrespective of sample.
There are n + 1 spaces between, before and after the n observations
into which the m observations may be distributed. If the two sam-
ples are from the same population, one would expect the proportion

of the m observations actually falling into a specified space torge

1

=3 ¢ Therefore Dixon subtracts the observed, proportion 8 3
n m

where m; is the number of such observations actually falling in

the ith space, from the expected proportion

, and squares
n+

the difference. This is done for each value of i from 1 to n+l.
The sum of these n+l squared differences is taken as the test

212



statistic and called cz. Probability tables are provided for c?

for cases in which neither m nor n is greater than 10, For larger
values of m or n approximate probabilities can be obtained by a
procedure which relates ¢~ to the chi square distribution. For
details see (12).

The quantity m, is of course the length of the run of ob-

servations from the sample of size m which occupies the ith inter-
val "between'' observations from the other sample of size n. How-
ever, since the ith interval may be unoccupied, m, may be zero.
: m.
Therefore the quantity squared by Dixon, i.e., il - ! is not
n m

directly comparable to the quantity squared by Ramachandran and
Ranganathan, i, e., the length of an actually obtained run which
therefore cannot be zero. Another way of putting it is that while

the value

™ is the expected proportion of m-sample observa-
n

tions falling in the ith interval, it is not the average length of

obtained, m-sample, runs,

Still another test somewhat similar to the two discussed
above, as well as to the Mann Whitney test has been outlined by
Mathen. See (32).

8. David's Chi Square ""Smooth'" Test of Goodness of Fit

One of the classic criticisms of the chi square test of
goodness of fit is that, since deviations from expected values are
squared before being divided by the expected value and summed,
the test does not take account of the directions of deviations. For
example, consider the following table in which the columns, from
left to right, represent the corresponding, successive, abscissa
intervals,
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If the only restraint is that Efo = 2fe, then there are 9 degrees

of freedom and the obtained value of 11 for X2 has a probability of
about .30, Although there is a strong indication that the left por-
tion of the true curve lies above, and the right portion lies below,
the hypothesized curve, chi square ignores this information and,
dealing only with the magnitudes of the deviations, falls short of
significance.

David (9) has proposed a test which takes account of both
the magnitude and the direction of the deviations., The test is
generally applicable (for reasons and for exceptions see 9, 11, 17,
41) only when there is a single linear restraint upon chi 'square,
i.e., when the sum of the expected frequencies has been made to
equal that of the observed, so that the number of degrees of freedom
is one less than the number of deviations. The data are arranged
in a table, similar to the one shown, with each column in the same
relative position as the abscissa interval from which its data were
taken. The chi square test is conducted in the usual way and its
cumulative probability, P (X~), is obtained. Then the total number
of runs of plus and of minus deviations is counted among the devia-
tions as they are arranged in the table. This number is referred to
a probability table, supplied by David, which gives

U
(o]
Pr(U<U )=, Pr(U| nn,), i.e., which gives the probability
= (o]

of the obtained number of runs cumulated from 2 to the obtained
number and conditional upon the existence of n,; plusses and n,

. . < "
minusses., (Since A‘fe has been made to equal Z fo’ Z fo -Z fe 0,

i.e., the sum of the deviations must equal zero, and there must
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be at least one positive and one negative deviation. Therefore,
since one run is impossible, the cumulation starts with two. How-
ever this qualification is automatically imposed whenever both n
and n, are different from zero, so any set of total-number-of
runs tables is appropriate if entered with the obtained values of

n] and n,, neither of which can, in this application, equal zero.)

The chi square test and the toal number of runs test are
independent. Therefore a single significance level can be obtained
for the two tests by calculating their joint probability., This is
somewhat complicated by the fact that chi square is a continuously
distributed variable while the distribution of the total number of
runs is discrete. However, David (9) has simplified matters by
tabling this joint probability., Thus one obtains the product of P(X%),
the cumulative probability of the obtained XZ, and P(U), the prob-
ability of the total number of runs cumulated from U = 2 to the ob-
tained value. David's tables give the values of this product which
are significant at the .05 and .0l levels of significance for values
of n; + n, S14. It is particularly important that expected cell fre-

quencies should be large enough for the binomial sampling distribu-

tion of Y"observed' frequencies to be well approximated by a normal
distribution. This is the case because ''an assumption implicit in

the test would appear to be that for each X2 cell there is an equal
chance of obtaining a positive or a negative deviation'. Furthermore,
the independence of the chi square and run tests relates to the the-
oretical, continuously distributed chi square distribution, not to

chi square as calculated from the sample. The discrepancy be-
tween the two ''chi squares' is neglibible when expected cell fre-
quencies are large, and effective independence can be expected to
obtain; however, there is no certainty that the chi square and run
tests continue to be independent when expected frequencies are small.,

9. Extensions of Run Theory

Runs discussed so far have involved only two kinds of ele-
ments arranged in a linear sequence. However various probability
formulae have also been derived for runs of like elements when
there are more than two kinds of elements (34, 43, 49) and for runs
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where adjacency among elements can occur along two or more
dimensions (3, 16, 24, 25, 26, 27, 31, 36, 37, 45). Such multi-
ple-category and polydimensional runs are generally analysed on
the basis of large sample theory, using critical ratios, rather than

exact probabilities, since the exact distribution of such runs rapidly
becomes difficult to tabulate as sample size increases.
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CHAPTER IX

RUNS UP AND DOWN

A type of run test for trend can be obtained by defining
a run as an unbroken sequence of increasing or decreasing ob-
servations, In this case the two kinds of events, 'greater than
the preceding observation' and ''smaller than the preceding ob-
servation, ' are neither fixed in number nor of constant probability
(since their probabilities depend on how ""extreme' was the pre-
ceding observation). Thus the formulae developed in the pre-
ceding chapter are inappropriate. By investigating the proba-
bility for a given pattern of observation magnitudes, rather than
a given pattern of dichotomized '"events, ' the necessary formulae
are obtained. Run tests of this type have used the total number
of runs, the length of the longest run, or chi-square applied to
frequencies of runs of various lengths, as the test statistic.
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] Introduction

Suppose that n observations have been taken on a contin-
uously distributed variable and arranged in the order in which
recorded. A continuously ascending sequence of observations
will be defined as a run "up'" and a monotonically decreasing
sequence will be called a run ''down'. Now suppose that each
observation is subtracted from the succeeding observation,
There will be n-1 algebraic signs to replace the n original
observations. A run "up' will now be more definitively in-
dicated by a sequence of + signs, and a run '"down'" will be un-
ambiguously identified by a run of - signs. The farther an
observation is from the median of the series, the less likely it
will be that the succeeding observation will depart from the median
still farther, Therefore 'plus' and "minus' are not constant
probability events and probability formulae for runs up and down
must be derived in the light of that fact.

Consider the probability that the ith observation ob-
tained initiates a run up of exactly S+1 observations so that the
difference sign obtained by subtracting the ith from the i+lst
observation is the first + in a sequence of exactly S plusses. A
run up of S+1 observations must begin with the first observation
in the entire series when n=5S+land it must either begin with the
first or end with the last observation when n=S+2. In order to
examine the general case where the run can initiate, terminate
or lie enclosed within the series, assume thatn 2 S+3. Consider
first the probability that the series begins with a run up of exactly
S+1 ascending observations, Let the first S+2 observations be
replaced by their ranks, from 1 to S+2, in order of increasing
magnitude. If the series is random, i.e., contains no true trend,
each of the (S+2)! permutations of these S+2 observations is
equally probable. But in order for the series to begin with a
run up of exactly S+1 ascending observations, the S+2 ranks must
be arranged so that: (a) the rank S+2, i.e., the highest among
the S+2 observations, occupies the S+lst position, (b) any one of
the remaining S+1 ranks occupies the S+2nd position, (c) the re-
maining S ranks are arranged in order of increasing size. Of
these three requirements, (a) can be fulfilled in only one way,

(b) can be accomplished in S+1 ways and (c) can then take place
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in only one way. So the probability that the series begins with a run

of increasing observations of exactly length S+1 is 1S—s+—_|_12-5-‘— . This

is also the analogously derived probability that the series ends with
a run up of exactly S+1 ascending observations, i.e., that a runup
of S+1 observations begins with the n-Sth observation.

Now consider the probability that a run up of S+1 ascend-
ing observations begins at some specified position, i, where
2<i<n-S-1, i.e., excluding the cases where the run begins
or ends the series. Let the i-1st to the i+S+1st observations
be ranked from 1 to S+3 in order of increasing magnitude. If
the series is random, each of the (S+3)! permutations of order
for these S+3 ranks is equally likely, But only in the following
ways can the S+3 ranks be arranged so that the first is higher then
the second, the second to the S+2nd form an ascending sequence,
and the S+3rd is lower than the S+2nd: (a) Rank 1 occupies the 2nd
position, rank S+3 occupies the next to last position, any one of the
remaining S+1 ranks is placed in the first position, any one of the
remaining S ranks is placed in the last position, and the remaining
S-1 ranks are arranged in increasing order of magnitude from 3rd
to second from last position. (b) Rank 1 occupies the second position,
rank S+2 occupies the next to last position, rank S+3 occupies the
first position, any one of the remaining S ranks is placed in the last
position, and the remaining S-1 ranks are arranged in increasing
order of magnitude from 3rd to second from last position. (c)
Rank 2 occupies the second position, rank S+3 occupies the next
to last position, rank 1 occupies the last position, any one of the
remaining S ranks is placed in the first position, and the remaining
S-1 ranks are arranged in increasing order of magnitude from 3rd
to second from last position. (d) Rank 2 occupies the second posi-
tion, rank S+2 occupies the next to last position, rank S+3 occupies
the first position, rank 1 occupies the last position, and the remain-
ing S-1 ranks are arranged in order of increasing magnitude from
3rd to second from last position., There is only one way in which
a specified rank can be assigned to a specified position and only one
way in which S-1 ranks can be arranged in order of increasing mag-
nitude in S-1 positions, Therefore, the number of ways in which
(a), (b), (c), and (d) can be accomplished is (S+1)S, S, S, and 1
respectively., The probability that a run up of exactly S+1 ascend-
ing observations begins at a predesignated position, i, when
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S2435+1

2 §i§n- s - 1, is therefore —W :

We have seen that when n >S + 3, the probability that a
run of exactly S+1 ascending observations begins with the ith obser-

S+l when i =1 or when i = n-S and is SZ—+38-+—1-
(s+2)! (5+3)!
i is any one of the n-S-2 values between 2 and n-S-1. These are
probabilities that the ith observation initiates a run up of specified
length, i.e., each probability is conditional upon the i-1st obser-
vation, if there is one, not being a continuation of the run. Other-
wise viewed, each proba—.b—ility is conditional upon the ith observa-
tion not being a continuation of any run up which began at some
point earlier in the series, Therefore, since the probabilities

do not refer to overlapping events, they can be summed over all
possible values of i to obtain the expected number of runs of the
specified type. Thus, when n > S+3 the expected number of runs
of ascending observations of lex-l-gth exactly S+1 or of plus differ-

vation is when

2(S¢1) , (n-S-2)§°+35+1)

ence signs of length exactly S is 512)! 513)! which
2 3, el
S™+3S+1) - (S7+3S -S-4

reduces to n( 2 254’35)' - ) . Following analogous

derivations, it is clear that when n = S+2 the expected number of runs

up of exactly S+l observations is _2(—(8—?—%17%- and when n = S+1 it is
-—(—5-41-’1—)-, (It should be noted that these derivations are based upon

the n observations being in a random order, not upon each difference
sign of a given type being equally likely,which is not the case.)

The expected number of runs up of ascending observations
of length S+1 or longer is derived in a manner analogous to that
already presented, dropping the restriction that the St1lst obser-
vation composing the run be followed by a lower observation. Thus
assuming n > St+2, one requires only that when i = 1 the S+1 obser-
vations beginning with the ith are arranged in order of increasing

225



magnitude and that when 2 £i < n - S, in addition to the above re-

quirement the i-l1st observation is higher than the ith,  The ex-
pected number of runs of ascending observations of length S+1 or

, (-S-1)(S+1) n(S+1) - (§+8-1)

i h
greater is therefore (S+1)! (5+2)! (S+2)!

when n > S+2 or whenn = S+1, And if 1 is substituted

.
(S+1)!
for S in the above formulas, the result is the expected number of
runs of ascending observations of length S+1 = 2 or greater, or the
number of runs of plusses of length 1 or greater. This expected

2n-1

number is when n 2 S+2 and 1/2 when n = S+1,

A run up and a run down commencing with the ith observa-
tion are mutually exclusive events. Therefore to obtain the ex-
Pected number of runs up or down, the expected number of runs
up should be doubled. Variances for runs of either plusses or
minuses of length S, or of length S or greater, have been given
by Levene and Wolfowitz (7). The formulae for the general case,
i.e., with S a variable, are lengthy, However, they are greatly

shortened when S is given a specific value. For S=1, 0'2 =
305 n-347 2 51,106 n-73, 859
it S el = = 2 2 >3
730 , and for S = 2,0 253,600 o Eorgi 1;
> > N 0 16 n-29
S 22, and S Z 3, the respective variances are: —50 ’
57 n-43 21,496 n-51, 269
" d b b
720 - 453, 600

Consider the n observations ranked from 1 to n in order
of increasing magnitude. There are n! permutations of these ranks,
and the expected number of runs of a specified type is simply the
total number of such runs which can be found in these n! permu-
tations divided by the number of permutations, n!, On the other
hand, the probability of at least one run of the type specified is
the total number of permutations in which such a run can be found
divided by the number of permutations, n!. Therefore the prob-
ability and expected number do not coincide when it is possible for
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more than one run of the specified type to be found in a single

permutation. However, when S > nT-l_ the formulae already pre-

sented for the expected number of runs of a given variety also give
the exact probability of occurrence for such runs. This appears
to be the only situation, when dealing with runs up or down, in
which an exact probability can be calculated without resort to a
recursion formula.

2. Length of Longest Run Up or Down

Using a recursion formula Olmstead (9) has calculated
and tabled exact probabilities for runs of like difference signs of
length S or greater when 2 <n <14, For n > 14 Olmstead has
tabled approximate probabilities calculated from asymptotic
formulae (9, 13).

3. Total Number of Runs Up and Down

The total number of runs is simply the number of runs
of plusses or minusses of length 1 or greater, and this was shown

in Section 1, Introduction, to have an expected value of an4 and
a variance of 1_6_9{_10-_22 when n is greater than 2. The total num-

ber of runs, r, is asymptotically normally distributed (6, 12), so
for large values of n the significance of the total number of runs
can be tested by treating r as a normal deviate and referring the

2 n-1
T -

critical ratio 2 to normal tables. By reducing the

16 n-29
90

absolute value of the numerator by 1/2, the critical ratio can be
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corrected for continuity.

If the total number of runs is r, then the series has re-
versed direction r-1 times, and a test based on the number of
"turning points'' is equivalent to one based on the total number of

2 n-4

runs. The expected number of turning points, T, is and

its variance is the same as that for the total number of runs. There-
fare the significance of the number of turning points can be tested by
forming the critical ratio analogous to that given above, referring it
to normal tables. When all tests concerned are applied to samples
from normally distributed populations the turning point test has an
asymptotic relative efficiency of zero with respect to the regression
coefficient test and also with respect to each of eight dist ribution-
free tests of randomness with which it was compared (10, 11),

See Table I of Introduction,

4, Chi Square Applied to Run Frequencies

The expected number of runs of plusses or minusses of
exactly length S was derived in Section 1, Introduction, and found

4(stl) , 2(n-S-2) (5%435+1)

0 e e (S+3)! ’

and the expected total

number of runs of plusses or minusses of all lengths was found to

2n-1
be 3 , the former result requiring that n 2 5+3 and the latter

being contingent upon n > S+2. However, if one regards the first
and last runs as '"incompleted' and counts only those runs which

4 (S+1)
(S+2)!

in the first formula must be dropped since it represents the first
and last runs, and the expected total number of runs must be re-
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